
  Supplementary Notes on Ch. 2 of McDermott: Language                                              CSC 191/291
  
Ch.2 of McDermott provides a good selective survey of some important AI techniques. He is surely
correct  in  arguing  that  humans  (and  no  doubt  other  animals)  rely  on  numerous  specialized
capabilities in their perceptual, motor, and cognitive functioning. However, his conclusion that there
is no "language of the mind", no general language understanding principles, or no general inference
methods,  relies too much on consideration of  the distinctive specialized perceptual  and motor
processes needed by any agent functioning in the world. His conclusion is not one that would be
accepted by most AI researchers who actually try to implement natural language understanding
capabilities and inference capabilities in machines.  McDermott's view is essentially the (original)
"MIT view", strongly influenced by Minsky -- that the mind is a collection of a large number of
complex "specialist" modules, whose interactions somehow give an illusion of unity. 

[Caveat: McDermott's negative view of a general mental knowledge representation and reasoning is
currently  quite common and in my view deleterious  for  AI,  one that  has  handicapped progress
towards human-level AI for a quarter century. Amazingly, John McCarthy, co-founder of AI (along
with Marvin Minsky, Alan Newell,  and Herbert Simon) and most famous exponent of the use of
logical knowledge representations in AI, is mentioned neither in ch.2 nor elsewhere in the book. As I
will  reiterate,  what has been neglected is  the semantic uniformity of all  human languages -- all
possess  the  same  set  of  semantic  expressive  devices  of  predication,  and/  or/  not/  if-then,
quantification,  modification,  etc.  (see  again  below),  even  though  on  the  surface  they  can  look
structurally quite different. This semantic uniformity virtually shouts for explanation -- and the most
obvious explanation is that the same types of semantic resources exist in the human brain. It may
well be that this is what gave rise the exceptional capacity of homo sapiens for both language and
thought circa 200-300 thousand years ago. And it is often forgotten that logics, at least in their
semantic expressivity,  and in their entailment relations, are derivative from language, rather than
being some sort of esoteric invention by mathematically minded thinkers.]

  
Natural Language Understanding (NLU)

Here is a quick overview of what natural language understanding involves, rather different from
McD's view of all intelligence as special-purpose routines:
  
First, if we start with spoken language, the acoustic signal needs to be mapped to a sequence of
words (or a probabilistic lattice of possible word sequences). This involves analyzing the frequency
spectrum,  and mapping this  in  stages  to phones,  phonemes,  and then words.  Phones are  the
distinct speech sounds that occur in human languages. Phonemes are groups of phones that are
equivalent in a given language, in terms of what they contribute to the structure of a (spoken) word;
e.g.,  in  English  "depict"  might  have  two  short  "i"  sounds,  both  perceived  as  such  but  actually
corresponding  to  different  phones.  Without  going  into  details,  the  various  processing  stages
typically  use  generative models,  involving  state-to-state  transitions  where  each  state
probabilistically generates an observable element. If the current state of the model is influenced by
only one or two earlier states -- there is no "memory" of what happened earlier in the sequence --
we have a "Markov" model (in fact a "hidden Markov model", or HMM, assuming that the states
themselves  are  not  observable).  For  example  certain  frequency  spectrum  features  over  brief



speech segments, computed by signal processing methods, might be viewed as the observable
elements generated by a Markov model whose states correspond to ("hidden") phonemes, to be
inferred from the observed phones. Once a likely phoneme sequence has been inferred (using e.g.,
the Viterbi algorithm, a fast dynamic programming method), a similar kind of HMM can be used to
infer a likely word sequence, where the words are thought of as generating several phonemes in a
row.   (For  phoneme-to-grapheme  inference,  see  the  44  phonemes  at  https://www.dyslexia-
reading-well.com/44-phonemes-in-english.html .)
  
  So let's assume we have word sequence like "Romeo loves Juliet".  How do we get to an internal
representation that can be used for inference? (E.g., if we also have a general fact that if x loves y,
then x wants to be near y, we should be able to infer that Romeo wants to be near Juliet; or, "Romeo
loves Juliet" might itself be an inference, if all we know is that "Everyone (i.e., every person) loves Juliet"
and  "Romeo  is  a  person".)  Very  sketchily,  what  we  do  is  to  parse the  sentence,  assigning  it  a
hierarchical (tree-like) structure, and then use rules that tell us how to map that structure to a logical
representation.  Here's a parse tree for our sentence, and the rules it is based on:
  
              S                         Phrasal rules:      Semantic (logical form) rules:
           /      \                      VP --> V   NP            VP’ = (V' NP')                       The rules “compose” the parts,
          NP    VP                 S  --> NP  VP            S’ = (VP’ NP’)                       with lambda-conversion where
          |           |  \                 Lexicon  :                                                                     possible
    Romeo    V  NP           Romeo: NP              NP’ = Romeo1
                      |      \             Juliet: NP                  NP’ = Juliet1
                  loves Juliet     loves: V                     V’ = (lambda y (lambda x (love x y)))
  
Here we've recognized  "Romeo" as a complete noun phrase (NP),  "loves" as a verb, and  "Juliet" as
another  complete  noun  phrase.   (We  get  these  facts  from  a  lexicon  for  English.)  We've  also
recognized the "V NP" combination as a verb phrase (often called the predicate of a sentence); and
finally we've recognized that the NP "Romeo" can now combine as subject of the sentence with the
predicate  VP,  "loves  Juliet",  forming  a  sentence,  S.  In  general  there  will  be  ambiguities  in  this
recognition process, but we set this aside for now.
  
Next we perform "bottom-up" semantic interpretation,  i.e.,  mapping the parse tree to a logical
formula. Here we use a semantic lexicon and rules for interpreting each phrase type. The semantic
lexicon tells us that the logical name (constant) corresponding to "Romeo" is (say) Romeo1, and the
one for "Juliet" is Juliet1. For "loves", the semantic entry is a bit trickier, as you see above:
       (lambda y (lambda x (love x y))).                    (In Lisp we would write  (lambda (y) (lambda (x) (love x y)).)
As in Lisp, the lambdas just specify the order of argument binding; i.e., y (the outermost lambda-
variable) is to be bound first when we apply the lambda expression to an argument, and x is bound
after that. We'll see this in action in a moment.  So first, we label the nodes NP, V, NP to which
"Romeo", "loves" and "Juliet" are attached with their semantic (logical) counterparts Romeo1, (lambda
y (lambda x (love x y))), and Juliet1 respectively. We now compute the semantic value of the VP
using the rule VP' = (V' NP'), where we use primes to refer to the semantic values of parse tree
nodes. The result is
     VP' = ((lambda y (lambda x (love x y)))  Juliet1)
            = (lambda x (love x Juliet1)).
  Finally we apply the rule S' = (VP' NP') at the top level of the parse tree, obtaining

https://www.dyslexia-reading-well.com/44-phonemes-in-english.html
https://www.dyslexia-reading-well.com/44-phonemes-in-english.html


     S' = ((lambda x (love x Juliet1))  Romeo1)
         = (love Romeo1 Juliet1).
So that's the resulting "logical" formula. As you see, that's a lot like the original English, but it has
been made clear what the logical relation is ('love') and what its first and second arguments are,
thanks to the bracketing and ordering of these arguments.
 
A slightly more complicated case is one where instead of "Romeo" in the original sentence we have
"everyone" (=  "every person").  Assume that the semantic lexicon supplies the value <every person>
for this, a so-called  unscoped quantifier. Then you can see that the resulting logical form for the
altered parse tree will be
     S' = (love <every person> Juliet1).
  Now,  "every" is  the  same as  the universal  quantifier  (as  used,  e.g.,  in  mathematics  or  formal
predicate logic -- the upside-down A), and as such should appear outside the sentence; for example
in number theory we might have the claim
     (every x (exists y (y > x)))
(for every number x there is a larger one y). So we still need to move the unscoped quantifier
<every person> to the "outside" of our formula.  When we do this,  we also introduce a variable
(bound by the quantifier), and we use the 'person' part of the unscoped quantifier to  restrict the
quantification to persons:
     S' = (every x: (person x) (love x Juliet1)).
Note that the colon after the x indicates that the next subformula, here '(person x)', restricts the
values of x that we are considering. In other words, we're only considering persons x when making
the  claim  '(love  x  Juliet1)'.  In  standard  predicate  logic  notation  (with  Lisp  bracketing),  this  is
equivalent to
     S' = (every x ((person x) => (love x Juliet1))),
i.e.,  for every x, if x is a person then x loves Juliet. (However not all  natural quantifiers, such as
"most",  can  be  represented  in  standard  predicate  logic,  whereas  with  the  quantifier  restriction
notation, we can easily say (most x: (person x) (love x Juliet1)).)
  
So now we can also see how inference would work. For example, given the premises
        (every x ((person x) => (love x Juliet1))),
        (person Romeo1),
it's intuitively obvious that we can conclude
         (love Romeo1 Juliet1),

much as in our previous example of inferring that the dog, Snoopy, has a tail, knowing that every
dog has a tail.  As mentioned at the time, the formal rule allowing this inference is "UI+MP", i.e.,
universal instantiation plus modus ponens. The name doesn't matter, but what does matter is that
we can justify this rule on perfectly general principles -- the conclusion is guaranteed to be true if
the premises are true. Showing this requires a theory of truth, which in turn requires denotational
semantics – which we’ve briefly studied, and which McDermott unfortunately rejects. Recall that
denotational  semantics  permits  certain  correspondences  between  symbols  and entities  in  the
domain we're considering. For example, 'Romeo1’ could correspond to a particular boy, ‘Juliet1’ could
correspond to  a  particular  girl,  'person'  could  correspond to  a  set  of  persons,  and  'love'  could
correspond to all pairs of entities where the first loves the second. If
     (every x ((person x) => (love x Juliet1)])



is true, then the set of pairs denoted by 'love' must include all pairs where the first element of the
pair is in the set denoted by 'person', and the second element is the girl denoted by 'Juliet1'.  Thus, if
the boy denoted by 'Romeo1' is in the set of persons, the pair consisting of that boy and the girl
denoted by 'Juliet1' must be in the set denoted by 'love' -- and that's why the conclusion
     (love Romeo1 Juliet1)
above is true, as previously noted! The key point is that the argument will go through even if we are
talking  about  numbers,  planets,  or  whatever.  For  example,  imagine  that  we  are  talking  about
celestial objects in our solar system, and 'person' refers to the planets, 'Juliet1'  denotes the Sun,
'Romeo1' denotes the Earth, and 'love' denotes the relation of one thing orbiting around another.
(Thus we are saying every planet orbits around the Sun.) Then the conclusion (love Romeo1 Juliet1)
still follows from the premises, but now it "means" that Earth orbits the Sun! Such inferential power
is not to be dismissed lightly ...

McDermott does effectively explain some of the difficulties involved in mapping language to an
internal representation, but the reasons he gives for pessimism seem to me on the wrong track.
One reason he gives is that understanding a sentence may require finding an interpretation that
minimizes  contradictions,  which  is  very  hard.  But that's  just  not  the way  language works.   For
example, we tend to interpret "He saw a monkey with yellow tail feathers" as if the monkey sported a
bird-like feathery tail, even though we know perfectly well that monkeys are furry, not feathery --
and even though a consistent interpretation is  available in which the monkey is HOLDING the
detached tail feathers of a bird. Most of the time, interpretation seems based more on familiar
patterns of language and predication, than on any consistency or plausibility checks.

Another reason McDermott gives (p.67) is that a symbolic representation is unusable if you can't
guarantee that every problem that can be expressed in it can be efficiently solved in it (and of
course  even  boolean satisfiability  is  intractable  unless  P=NP...)  This  is  an  unfounded and even
perverse  claim that  has  hamstrung much "logical"  AI  research in  the last  25 years.   Obviously,
PEOPLE can comprehend (hence presumably represent to themselves, somehow) problems that
they find extremely difficult or even impossible to solve -- Fermat's last theorem waited more than
3 1/2 centuries for a proof, and Goldbach's conjecture, the continuum hypothesis, and the P=NP?
question, etc., remain unsolved. So why should AI systems be prevented from even being able to
REPRESENT such problems? The arguments that are made (e.g.,  by Brachman and Levesque in
their text,  Knowledge Representation and Reasoning) to support such a position are very much like
saying: beware of using programming languages that allow recursion or looping, because then you
can't guarantee fast termination of all problem-solving algorithms that you can implement in that
language!

I'd also warn you about McD's discussion of reasoning. On p.68, he argues that (1) people don't do a
significant amount of deduction (which I believe is a serious mistake, as I argue in my reply to his
"Critique  of  pure  reason",  in  the  same  issue  of  Computational  Intelligence  as  that  paper);  (2)
computers do a lot of nondeductive reasoning such as planning (very true; I would add "schema-
based expectation" as major form of inference); (3) both types of reasoning often lead to mistaken
conclusions (true, in part because of the "guesswork-like" methods we use and in part because the
premises FROM which we, or our computers, reason are often unreliable, being based on unreliable
sources.); THEREFORE "computers don't deduce, they calculate". (This is a non-sequitur.)
  



Commenting on efforts to build large knowledge bases over expressive representations, such as
Cyc, he reiterates his skepticism about any general representational and reasoning techniques. He
thinks we need to just keep compiling an ever-larger collection of specialized methods. He declares
that the intuition people have that we have a comprehensive internal knowledge representation (in
particular, for the content of language) is an "illusion" based on introspection -- we are misled by
our self-model.
  
I would counter, coming back to my earlier point, that we have plentiful external manifestations of
such an internal representation,  namely human languages themselves! I  cannot comprehend why
someone who takes a serious look at the structure of human languages and the way they convey
meaning  could  fail  to  be  struck  by  the  following  expressive  devices  shared  by  ALL  human
languages:
    - naming of individual entities ("Plato", "New York City", or 
      "Hurricane Katrina");
    - predication ("Plato is a man"), "The cat is on the mat");
    - connectives ("and", "or", "not", "if ... then");
    - generalized quantifiers ("all humans", "most Western democracies")
    - equality ("Lincoln's assassin was John Wilkes Booth")
    - predicate modification ("very smart", "dances gracefully")
    - sentence modification ("Perhaps there is life on Europa")
    - predicate reification ("happiness", "humankind")
    - sentence reification ("The fact that Brutus stabbed Caesar")
    - event reference and modification ("Molly barked last night.
      This went on for an hour, and woke all the neighbors.")
(Two or three further items could be added.) Surely this has some significance -- and as noted the
most  straightforward  assumption we could  make  is  that  these  features  are  a  reflection  of  our
internal representational capabilities -- which suggests that our "mentalese" is a kind of enriched
logic-like, language-like representation, the very hypothesis McDermott scoffs at.


