McDermott’s discussion of NLP

Language

How well do computers solve the problem of language use?

Before we can ask that question, we have to decide whether there is a
problem of language use, and if so, what it might be. If the problem is to get
computers to understand spoken commands, then it is often quite easy
o define, at least in principle. Given the set of all possible commands,
and a particular utterance, then the question is, which command was
intended by thar utterance? If there are just two possible commands, as
might happen with an automarted balloon guidance system that need only
respond to Up and Down, then the problem is to figure out whether a
certain yell sounds more like one than the other. If there is essentially an
infinite number of commands (say, strings of coordinates given to a more
elaborate navigation system), then, as we shall see below, the problem
gets somewhat more complicared.

But suppose the problem is simply to “understand™ an ordinary English
utrerance. Historically this has been the ultimate problem of the ficld of
“matural language processing,™ or perhaps of Al in general. For example,
consider these two sentences (due to Winograd 1972):

The city council refused the demonstrators a parade permit because
they advocarted violence.

The city council refused the demonstrators a parade permit because
they feared violence,
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In the first sentence, one sees instantly that “they™ refers ro the demon-
strators. In the second, it is obvious that “they™ refers ro the city council
members. If you saw ecither sentence withour the other, it would probably
never occur to you that there was an ambiguiry, especially if the sentence
occurred in the context of a coherent story about a political squabble.
Whatever else you may say about sentence understanding, it's clear thae
you don't understand sentences such as these unless you can successfully
infer what “they™ and other pronouns refer to.

Unfortunately, although ir is not hard to enumerate inferences thar a
language-understanding program ought to be able to make, such an enu-
meration does not really pin down whart problem such a program is sup-
posed 1o be solving. There is an infinite number of possible inferences;
which ones need o be found in order to understand a sentence?

Ar one time it appeared that there was a natural answer to this ques-
tion. Suppose there is an mternal notation system in which thoughrs are
expressed. (Fodor 1975 calls it the “language of thought.™) The brain
keeps wrack of a proposition it believes by, in essence, wrniting down the
expression for thar proposition in the internal notation, and tagging the
expression with a “B™ for “believed.” It infers new beliefs from old ones
by processes akin to the manipulations of a formal deductive system.
Just as a formal deductive system allows you to conclude Q from P and
If P therm Q, so the brain concludes “the butler did it™ from “this is a
mystery set in an English country house™ and “no one else but the butler
could have done it.” If you don’t quite see how to make cthe leap from
the inference involving If P then Q to the inference involving the butler,
you're not alone; but perhaps part of the difficulty is that we don’t yet
understand how the internal notation works.

The nice thing about the internal-notation proposal is that, if it could
be carried owt, it would tell us what inferences need to be drawn in un-
derstanding a sentence, namely, just those required to recover the proper
internal representation of it. The problem of pronoun interpretation fits
neatly here. The nternal representation of a sentence should presumably
not contain any pronouns. If there is a term X, that is the proper transla-
tion of “the city council,”™ and another, X;, that is the proper translation
of “the demonstrators,”™ then the internal representation of either of the
example sentences given above contains either X; or X: in the expression
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about the cause of X;'s decision regarding X;'s permit. Pronouns make
sense as abbreviatory devices in speech, but expressions in the internal
notation are going to be stored for a long time and used in many different
contexts, o it's hard to see how such abbreviations could be useful. If
mmeullsmc“GoxeM&Stnnhoncomung.Sbehum
for you,” what I want in the internal representation of “She has some-
thing for you™ is some label for the bundle of facts I know abour her. For
instance, if I am engaged in looking for Ms. Smith, my visual system must
have ready access to information about what she looks like. A pointer to
this bundle of facts is very different from the pronoun “she.”*®

Ammingyouareconvmocdbyd\isugumem,youwillthenw
that you can't translate the sentences about granting the demonstrators a
parade permit unless you can make inferences about the motives and likely
behavior of city councils and demonstrators. If we make similar arguments
abommheraspecuolthemms,wemiﬂnmnuuﬂywmdupwidn
a formal representation of the second sentence that looks something like
this:
group(d3, person) /* d3 is a group of persons */
city.council(c4, city8) /* o4 is the city council of some city */
hypothetical event(e66, parade(d3, citys)

& 0 < time_ interval(e6S, ¢66) < 1 month)

event (e65,

request (d3, c4,

pernission(e66)))
/* €65 is the event of d3 requesting permission for a parade in the city
in the near future */

event (e67,

deny(c4, d3, 65))
/* €67 is the event of c4 demying the request referred to as e65 */
reagon(e66, fear(c4, violent(e66)))

Note that “they™ has vanished, replaced by c4, the term denoting the
city council. Note also that I have made several other facts explicit that
were only implicit in the sentence, including the fact that the violence the
council was afraid of would be associated with the planned parade.
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Unforrunately, the internal representation theory is not as healthy as it
used to be. There are two problems: how to recover internal representa
tions from sentences (and other inputs), and what to do with them once
they have been recovered. The first problem may sound harder, but in
fact the second is worse. Many of the solutions to the first problem don’
work until you've solved the second. One such solution is to choose the
internal representation that minimizes contradictions with what you al-
ready know; but this requires being able to tell when a set of beliefs in the
internal notation is inconsistent.

One problem is that it appears there is no way to make inferences ef-
ficiently using the sorts of complex symbolic structures that the theory
posits. If we restrict our attention to deductive systems, then most in-
ference problems can be shown to be intractable in the worst case. “In-
tractability” is a technical property of a problem, and it is difficult to
explain exactly what its consequences are. (I will explain it a bit further
in chapter 5.) For our purposes, a problem is intractable if any algorithm
that solves every instance of it will take a very long time on some in-
stances, and in particular if the delay grows much faster than the size of
instances of the problem. For every problem size larger than some low
threshold there is an instance of that size that the algorithm will take more
than a billion years to solve on any conceivable computer. Such problems
are not out of bounds to Al; in fact, many problems of interest to Al are
intractable. It may sound crazy to try to solve an unsolvable problem,
but there are some loopholes: it may be useful to solve some problems of
large size, even if not all can be solved; it may be useful to find a near-
solution when no solution can be found; and, in some cases, even though
a problem class is intractable there is a special subclass that can be solved
efficiently.

The problem is that no l\as proposed anything like a special subclass of
the problem of making mferenca from internal language representations
that (a) is big enough to include the representations of all sentences people
are likely to utter (or think about); and (b) supports efficient inference
algorithms.

However, the absence of an efficient deductive inference algorithm is not
the biggest obstacle to the success of the theory. The biggest obstacle is that
most inferences we make are not deductive, and there is no general theory
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of nondeducrive inference (McDermotr 1987). A deductive inference is an
inference that must be true if its premises are. If you hear that your older
brother got more jellybeans than your younger brother, and that your
younger brother got more jellybeans than you, then you can be sure of
the inference that your older brother got more than you, so long as you
don’t doubrt either of the two premises you heard. This is an example of
a deductive inference. They are hard to find outside of geometry class. If
you vote for Jones because she is a Republican and therefore will support
a balanced budget, you must be prepared for disappointment. That’s an
obvious example, but consider something much more straightforward:
you go to class ar 9:30 on Wednesday because the class meets Monday,
Wednesday, and Friday at 9:30, It’s very likely that the class will meet on
this occasion, but it’s not definite. There are many reasons why it might
not. That's life,

There is no problem in principle with a computer making deductive or
nondeductive inferences. If a robot makes a plan for going to a destination
based on a map inferred from sensory data, the plan might or might not
work. The inference to the plan can be wrong for all sorts of reasons, even if
the premises are true (i.e., the input data were accurately sensed). Even in
the case of something as straightforward as the calculation done by the IRS
to determine whether you get a refund or must pay more taxes, it is not
always obvious if the inference is deductive. Suppose the IRS computer is
figuring the taxes of a consultant, and sees three income items, one for
S5467, one for $1076, and one for $1076.39. Is the inference that the total
income = $7619.39 a deductive inference? A human accountant might
wonder if the second two figures were the same amount reported twice, by
two different channels. Is he doubting the premises, and if so what are they?

The point is one | have made above: computers don’t deduce, they
calculate. Whether the conclusions they draw are deductive or not is seldom
an issue.. The problem is not with getting computers to draw nondeductive
conclusions; they do it all the time. The problem is to get them to do it with
an arbitrary formula in the internal notation. The IRS computer can
represent facts about tax returns. The map-building robot can represent
facts about the layout of buildings. What’s missing is a general theory of
inference that will tell us what we are justified in inferring from an arbitrary

Artificial Intelligence 69

collection of facts. In the first half of the twentieth century, philosophers
like Carnap worked hard on finding such a theory, and instead found
many reasons to doubt that such a theory exists (Purnam 1963).

It could rurn out thar chere is some marvelous computational engine in
the brain thar can manipulare the sorts of expressions exemplified above,
making nondeductive inferences rapidly, smoothly, and fairly accurarely
withourt rurning a hair—but I doubrt ic. My guess is that life tends to present
us with a series of stereotypical problems, for which our brains have
specialized solution techniques. Information is not stored in a general-
purpose notation, but in a set of notations specialized for the algorithms
that will be used to solve them. For instance, there might be one repre-
sentation system for maps, a different one for manipulable objects in the
immediate vicinity, and another for faces of people we are acquainted

with
Language appears to be the big counterexample to this proposal, because

we can apparently hear a sentence on any topic and immediately assimilate
the information it contains. But this appearance might be misleading. It is
now accepted that any normal person can perform a purely syntactic
analysis of an arbitrary novel sentence with no conscious effort. Syntactic
analysis---or parsing---segments a sentence so that the phrases it contains
are properly grouped. For example, in a sentence like “The man Fred yelled
at was more helpful,” we know immediately that Fred yelled at the man and
that the man was more helpful (and not, for instance, that the man yelled at
Fred or Fred was more helpful(, The question is what happens to the word
groups after such syntactic parsing. Consider a riddle such as this one: “If a
plane crashes right on the border between the United States and Canada,
where would they bury the survivors?” Or this one: “A train leaves New York
headed for Albany at 80 miles per hour, and simultaneously another train
leaves Albany headed for New York at 40 miles per hour. When they collide,
which one is closer to New York?” A significant number of people perform
such shallow analysis of these seemingly simple questions that they get the
meanings wrong. What model of semantic processing would account for
that?

Fortunately, we can learn a lot about language without solving the
problem of what it means to understand an arbitrary sentence. For instance,
consider the problem of information extraction, in which the computer’s
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job is to extract data from sources such as newspaper stories or commer-
cial message traffic. Suppose we are interested in tracking the occurrence
of terrorist incidents around the world. We could hire people to read news-
papers and summarize all the stories about terrorism. But we can provide
& more precise description of the job: scan every story; if it doesn't de-
scribe a terrorist incident, discard it. Otherwise, figure out who attacked
whom, on what date, in what location, with what weapons, and what
damage was done. In other words, the crucial data about each story can
be fit into a simple table:

Date:
Location:
Terrorist:
Victim:
Weapon:

Furthermore, each blank can be filled in with something simple. The
date and location can be in standard formats. The terrorist can be one of
several anticipated organizations (the IRA, the Shining Path, the PLO—
the usual suspects), and if we can't extract a familiar name, we can just
include whatever phrase was used in the article.

The point is that by focusing on this task we can sidestep the question of
true understanding and replace it by the question: can computers perform
this task as well and as cheaply as people?

Another example is the problem of translating from one language to
another, possibly in a restricted domain. Suppose | want to translate
computer-software manuals from Japanese to English. I can hire a person
todo it, or | can write a computer program. In the case of a person, | would
assume that a prerequisite to doing the job is the ability to understand both
Japanese and English. But that's not strictly part of the definition of the
problem. There might be rules that enable me to select the right synractic
structures and word choices in the target language without understanding
what the words mean.

Then there is the problem of translating spoken speech into written
words. Like many skills we usually take for granted, it seems efforrless
but is really extremely difficult. If you have ever tried to understand a
native speaker of a language you have been exposed to only in school,

]
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you have an idea of how hard it is 1o extract words from what sounds
like a rapid stream of meaningless babble. However, this problem does
have the advantage of being well defined. A string of speech sounds does
usually correspond to a single string of words, and all we have to do
IS extrace it.

In all chree of these cases, we can view the computer as a proxy. It is
extracting information, or translating text, or capturing spoken words,
so that eventually a human being can look at them. Hence, with a cou-
ple of reservations, we can postpone the task of getting the computer to
understand the words.

One reservation is that you probably can't do any of the tasks | described
perfectly withour actually understanding the words being manipulated.
In the 1960s, Yehoshua Bar-Hillel wrote a paper arguing that you can't
translate properly without actually understanding what you're translar-
ing (Bar-Hillel 1960). In the two sentences:

The ink is in the pen
The pig is in the pen
it’s impossible to translate the word “pen™ without understanding what's
being described, because in most languages the word for “writing instru-
ment” and the word for “enclosure for animals™ are not the same. He
concluded that translation would be impossible without first solving the
understanding problem. (Then he went on to conclude that translation
was impossible because the understanding problem was impossible.) But
this argument is not airtight. For one thing, it may be possible to get
the right translation of “pen™ from the mere presence of “ink™ or “pig”
in the vicinity. With enough statistical knowledge of the patterns of dis-
course in English one might be able to fake understanding. But even if
there are examples that absolutely require understanding, we can still ask
whether it is possible to automate the process so that the computer cost-
ing $ X/hour makes about as many errors as a person costing $ X/hour
would (or fewer)? After all, people aren't perfect at information extrac-
tion, translation, speech transcription, or anything else. Can computers
compete?

The other reservation is that in the long run we will have to say more
about what it means to understand language. Fortunately, the problem
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doesn't seem particularly urgent. If machines have no thoughts about city
councils and parade permits, getting them to talk about those things is a
sterile exercise. What I expect to happen is that as people and machines
have an increasing need to communicate in areas they are collaborating
on, the machines will begin speaking and understanding some very min-
imal subsets of natural language, and these will gradually grow. At the
same time we may gain greater insight into what really happens when
people speak and understand.

Since that day has nort yet come, let's look in some detail at what com-
puters can do with natural language now. We start with speech recog-
nition. If a speech signal were presented as a stream of consonants and
vowels, then the problem would be to figure out how to group them into
words. But the speech signal is actually just a time-varying sound, and the
problem for the human ear and the computer is to extract the consonants
and vowels—or pbonemes—before it can even look for words.

Sound waves consist of slight pressure disturbances traveling through
the air. A transducer, such as the human ear, converts these vibrations
into a form suitable for information processing. A key fact about waves
is that they can be summed, or superposed. If you throw two rocks into
a pool at slightly different places, the two wave parterns expand forward
together, and the net effect at any given point on the pool is the sum of the
effects of the two rocks. Similarly for sound waves. Suppose we transmit
a sound consisting of just two pitches. Each pitch corresponds to a wave
of a different frequency. The two combined yield a wave that is the sum
of the individual waves (figure 2.10). To hear the two pitches (as we in
fact can), the ear must take the summed wave and decompose it into the
two waves that it comprises. This is called a frequemncy analysis or Fourier
analysis of the wave.

Real sounds tend to have contributions at all the frequencies over a
range. When your mouth forms the sound “s,” it is generating a large
variety of frequencies, but only for the duration of that sound. In the
word “so,” the frequency bundle, or spectrum, of “s” is immediately fol-
lowed by a different but equally complex spectrum for “0.” Specifying
a frequency bundle requires more than just specifying its component fre-
quencies. We must also specify their strengths, thar is, bow much of each
frequency to mix in. It turns out that as the mouth is shaped to produce
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Figure 2.10
(a) Low-frequency signal. (b) High-frequency signal. (c) Sum of (a) and (b)

different vowels, it takes on different resonant frequencies. A resonance
15 a natural mode of vibration of an object. If an object is stimulated by
vibrations at different frequencies, it will respond most vigorously to vi-
brations at its resonant frequency. The air inside the vocal passage has
several resonances at any given moment. When stimulated by the sound
from the vocal cords, it tends to pass the resonant-frequency compo-
nents through and mute the others. The resonant frequencies associated
with a particular vowel sound are called the formant frequencies of that
vowel (Denes and Pinson 1973). We are, of course, completely unaware
of this level of analysis. When we hear a vowel in our native language,
we hear it as a single distinctive sound without any components. Vowels
in foreign languages sound like weird versions of the vowels we are fa-
miliar with. Figure 2.11 shows the sound pattern of the sentence “Kids
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Figure 2.11
Spectrogram of sentence “Kids can scan cats”™ uttered twice

can scan cats” as spoken twice by a native of the American midwest. (The
word “can” 1s emphasized so that it contains the same vowel as “scan.”)
The sentence is repeated to show that the variation between words is
greater than the variation between different utterances of the same word.,
The vertical axis shows the amount of energy present at different fre-
quencies as different sounds are produced. A darker patch indicates more
energy at the corresponding frequency. Vowel sounds (*i* and “a” in
this example) are longer than consonants, and have a distinctive pattern
of dark, irregularly horizontal bands; the bands occur at the formant
frequencies.

Consonants are more difficult to define than vowels. Although “s" has
a distinctive spectrum, a typical consonant like “k" or “t” is defined as
a transition in one of the formant frequencies. The transition is very fast
and hard to spot in speech diagrams. Furthermore, what sounds like the
same consonant in different words is actually a varying sound pattern
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that depends on the context. A *k™ before an “a” is a different pactern
than a “k™ before an “i" (figure 2.11).

So it seems that what we have to do in order to recognize speech is
() break the sound stream into small segments and do a frequency analysis
of each segment; (b) scan a catalog of phonemes to find the one that
matches most closely. Unfortunately, it is hard to create such a catalog,
because a given phoneme will correspond to many different frequency
patterns, depending on the phonemes on either side of it, the exact shape
of the speaker’s mouth, the amount of background noise, and so on.

Ar this point we must resort to a probabilistic analysis of the speech
data, using stanstical techniques to find the most likely interpretation of a
stream of sounds, the same rechniques that are so useful in map leaming
and in other arcas. What we are interested in is finding a word string W/,
such that
P(speaker said W | beard sound stream )

is as large as possible. This quantity is the conditional probability that
the speaker sasd W given that the hearer heard sounds S. Just as in map
learning, we are interested in the hypothesis (W) that will maximize this
probability, once we have gathered the evidence (§).

For instance, suppose the sound stream were something like, “Write
before the game was tidy through an intersection.” Of course, by using
English words to describe this sound stream I am being (deliberately)
misleading. What [ should do instead is indicate it purely phonetically,
perhaps this way: *Rietbeefordhuhgaimwuhztiedeethr
ucanintuors e ksh oh n™ using one- or two-letter combinations to
indicate sounds. (The sound “dh” is a voiced “th”; the word “this™ starts
with*dh,” where as the word “thespian™ starts with “th.” You may never
have noticed the difference, which just illustrates the point that it's casier
to hear the senses than the sounds of your own language.) Call this sound
stream S;. Now consider these two possible word strings:

W; « Right before the game was tied he threw an interception
Wi < Write before the game was tidy through an intersection

There are, of course, many other candidates (such as, “Write bee four
the game ...~ e1c.). Most speakers of American English, at least those
familiar with American football, would rank P(WHS.?,high« than

——
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P(W5]5,). Although this hypothesis requires the assumption that the
fourth-from-last sound was actually a “p”™ and not a “k,"” it is hard
to imagine anyone saying Ws. We might assign probabilities as follows:
P(W;|8)) = 98; P(W5|S5;) = .005, .... The sum of the probabilities
for all the candidates has to be 1, so the remaining .015 is divided among
the other candidates. In principle, there could be a lot of them, with very
tiny probabilities, but perhaps we can neglect most of those, as long as
we always find the most kikely candidates,

Now comes the hard part: getting a computer to compute the probabil-
ities correctly. Over the past twenty years, there has been steady progress.
The most successful programs are based on the idea of hidden Markov
models of speech signals. A hidden Markov model, or HMM, is a way of
characterizing all the different ways a word (or sentence) can be uttered,
and assigning a probability to each pronunciation. Such a model is a net-
work of states whose links are joined by links labeled with probabilities
and outputs. A word is generated by starting in the special imitial state
of the HMM, then moving to a state along a link, then to another state,
and so on, generating outputs as the links specify. If a link is labeled with
p, this means that the link is followed with probability p, and when it is
followed the output symbol s is generated. Output symbols are patterns
of spectral energy, of short enough duration that every speech sound can
be characterized as a sequence of such patterns.

For concreteness suppose we have a single HMM for each word. If
we run it repeatedly, we will get a variety of symbol sequences out, each
corresponding to a different pronunciation of the word, The more likely
pronunications will be generated more often. So the model characterizes
fairly directly the following conditional probability:

P (sound stream S | word W),

But what we want is the opposite, P(W|S). Fortunately, we can use
Bayes's Theorem again to estimate this quantity given a sec of HMMs
representing words. We can combine statistical models of the way sounds
make up words with stanstical models of the way words occur in sen-
tences to produce models for recognizing words in context. In case you're
wondering where all these models come from, the answer is that they can
be inferred automarically from samples of speech. Consult Jelinek (1997)
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Figure 2.12

Architecture of an information-extraction system (from Cardie 1997, fig. 2)

or Rabiner and Juang (1993) for details, but be prepared to get through
some fairly high-powered mathematics.

Today speech-recognition systems are becoming commercially avail-
able. They are reliable for isolated words, somewhat less so for recognition
of continuous speech. One company claims 95% accuracy in recognition
of continuous speech at 160 words per minute. Typically, to achieve this
kind of performance the system must be getting sound input only from
the speaker, without any loud distracting noises in the background. Still,
these are very impressive figures.

Let's turn our attention now to information extraction, in which texts
are scanned to find fragments that fill slots in an output template.
Figure 2.12 shows the architecture of a rypical information-extraction sys-
tem. In the first two phases the sentence is analyzed syntactically. (These
systems usually start with printed words, so no speech recognition is nec-
essary.) As | implied above, this parsing process requires assigning the
correct syntactic structure to the whole sentence (Jackendoff 1987), buc
information extractors usually don’t try to do that. One reason is that
sentences often have several different possible syntactic analyses, which
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we are normally unaware of. Another is that some inputs use bad gram-
mas, and o have no complete syntactic analysis, or no correct one. To
sidestep these problems, information extractors do “partial parsing,” in
which only phrases whose analysis is fairly certain are found, For exam-
ple, in a sentence like “The Liberation Frone blew up the Minister with
his bodyguards,” it is obvious only after semantic analysis that “with
his bodyguards™ does not modify “blew up.” (Contrast “The Front blew
up the Minister with grenades.”) But we can extract the phrases “The
Liberation Front,” “blew up,” “the Minister,” and “with his bodyguards"
with fair confidence that they are at least constituents of the correct
analysis.

In the next phase, the phrases found are used to generate pieces of
information that may ultimately be part of the answer. This phase relies
on domain-specific relations between phrases. If “blew up” is followed by
a noun phrase, then in the terrorism domain it is probably giving us two
slot fillers: the victim of a terrorist act (the noun phrase) and the weapon
used (explosives). Any phrase that doesn't fit an extraction pattern is
ignored, the hope being that it is not relevant to the target domain.

However, the program can’t juse throw the information so gathered into
the output template. There may be more than one such template, 5o it is
important to figure out how the fragments fit together. This calculation is
done during the merge phase of information extraction. The key step is to
realize when different noun phrases and pronouns probably refer to the
same entity. This is a generalization of the pronoun-reference problem |
discussed at the beginning of this section, In this situation the program
has to infer that, for instance, “the tornado™ and “the twister” refer to
the same entity. It does so by merging any two expressions that could be
synonyms and have no contradictory properties.

The performance of an information-extraction program is measured
using two quantities, recall and peecision. Recall is the fraction of relevant
facts in a vext that the program actually finds. Precision is the fraction of
facts the program finds that are correct. Suppose a program for extracting
information about terrorist incidents fills its template as follows:

Date: July 15, 1998
Location: ??
Terrorist:  the French Press
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Victim: General Francois Mercredi
Weapon: 22

The onginal story might have been:

The French government revealed yesterday that General Francois Mercredi was
the vicrim of a terrocist incident last moath. Gen. Mercredi was last seen on July
15. His body was found just yesterday, with two bullet holes to the head, and a
note in the pocket from the Aquarian Liberation Front. He had had a rocky career,
having been repeatedly attacked by the French Press, but seemed to be vindicated
after being made Commander of the Fifty-Fifth brigade. He was last seen leaving
his willa on the way to work.

In this case there are four pertinent facts specified in the article (the victim,
the date, the terrorist group, and the weapon). The program has found
two of them and also surmised that the terrorist was the “French Press.”
Hence the recall is 2/4 = 50%. Of the three “facts™ the program found,
two are correct, so the precision is 2/3 = 67%.

Several information-extraction programs have been written, notably
those produced by the contestamts in the Message Understanding
Competitions sponsored by the Defense Advanced Research Projects
Agency in the early 1990s. Since then programs have been written to
extract information from other kinds of text, such as medical records
(Soderland et al. 1995). Getting a program to work in a given domain
requires careful analysis of the concepts, words, and phrases in that do-
main. In a typical case one can achieve recall rates of about 50% and
precision rates of about 70% (Cardie 1997). These rates may not sound
very impressive, but the rates for people are not that close to 100% either,
and, moreover, people take longer. For many applications, such as doing a
fast scan through thousands of articles for relevant information, it might
be better to employ a computer than a person.

It is not clear how much programs like this have to say about the way
people process language. Some of the assumptions they make appear to
be obviously wrong. For example, it has been known since the 1950s
(Chomsky 1957) that Markov models are not powerful enough to rep-
resent the grammar of a real human language, so it may seem crazy to
rely on them so heavily in speech recognition. However, the role they play
in speech recognition is to account for variations in data, not for gram-
mar as such. Besides, there are ways of incorporating similar ideas into
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more powerful grammatical mechnanisms, yielding probabilistic phrase-
structygs grammars {Charniak 1993).

Even if such technical objections can be dealt with, it seems as if lictle
progress has been made on actually “understanding™ natural language.
The information-extraction model seems unable to account for humans’
ability to hear something unexpected, something that would fall outside
the range of the templates it is trying to fill in. And the theory is silent on
the question of why and how sentences are generated in the first place.

These criticisms are reasonable but not conclusive. It is an open ques-
tion how novel a sentence can be and still be understood by the average
person the first time he or she hears it. Conversations often involve fairly
formulaic topics. Perhaps after syntactic analysis people troll through a
sentence looking for material relevant to the current topic, extract enough
morsels of information to advance the conversation a bit, and discard the
rest. In any case, the alternative—that an arbitrary content can be gener-
ated, placed in one’s mental model, and used without further ado—scems
very dubious for reasons outlined above.



