CSC 191/291

Some Rules of Reasoning

The reasoning example we saw for "Robbie's self-model" showed particular logical reasoning examples (Robbie is not a person, Robbie is located somewhere, there is a dog), but without explicitly listing the mechanical rules we can use for such reasoning. Here are 4 very common inference rules, followed by another example:

C is some constant

An inference using 2 steps: $\quad \underline{\operatorname{Dog}(S n o o p y), ~} \forall x . \operatorname{Dog}(x) \Rightarrow$ Has-Tail(x) Has-Tail(Snoopy)

Can you see which 2 rules have been used?
Horn clause form would use just one step (free variables are implicitly universal):
Dog(Snoopy)
$\operatorname{Dog}(\mathrm{x}) \Rightarrow \mathrm{Has}-\mathrm{Tail}(\mathrm{x})$
-------------------- We unify variable x with constant Snoopy
Has-Tail(Snoopy)
Similarly, using clause form, a single resolution (cancellation) step suffices:

$$
\frac{\operatorname{Dog}\left(\text { Snoopy }, \quad{ }^{7} \operatorname{Dog}(\mathrm{x})\right. \text { v Has-Tail(x) }}{\text { Has-Tail(Snoopy) }} \quad \begin{aligned}
& \text { Again, we unify as above (cf. rule 3, } \\
& \text { and the "Robbie" QA example) }
\end{aligned}
$$

These are deductive rules (as such completely reliable -- "sound"). But keep in mind that not all reasoning is deduction: We saw various ways of "jumping to conclusions" in unsound, but generally useful ways; and recall special "analogue methods", for example for "conjuring up" images in the mind (and in computers, we can use computer graphics to store and manipulated such images).

Faulty self-modeling ...

