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To examine how the syntactic structure of a sentence can be computed, you must 
consider two things: the grammar, which is a formal specification of the struc-
tures allowable in the language, and the parsing technique, which is the method 
of analyzing a sentence to determine its structure according to the grammar. This 
chapter examines different ways to specify simple grammars and considers some 
fundamental parsing techniques. Chapter 4 then describes the methods for con-
structing syntactic representations that are useful for later semantic interpretation. 

The discussion begins by introducing a notation for describing the structure 
of natural language and describing some naive parsing techniques for that 
grammar. The second section describes some characteristics of a good grammar. 
The third section then considers a simple parsing technique and introduces the 
idea of parsing as a search process. The fourth section describes a method for 
building efficient parsers using a structure called a chart. The fifth section then 
describes an alternative representation of grammars based on transition networks. 
The remaining sections deal with optional and advanced issues. Section 3.6 
describes a top-down chart parser that combines the advantages of top-down and 
bottom-up approaches. Section 3.7 introduces the notion of finite state trans-
ducers and discusses their use in morphological processing. Section 3.8 shows 
how to encode context-free grammars as assertions in PROLOG, introducing the 
notion of logic grammars. 

3.1 Grammars and Sentence Structure 
This section considers methods of describing the structure of sentences and 
explores ways of characterizing all the legal structures in a language. The most 
common way of representing how a sentence is broken into its major subparts, 
and how those subparts are broken up in turn, is as a tree. The tree representation 
for the sentence John ate the cat is shown in Figure 3.1. This illustration can be 
read as follows: The sentence (S) consists of an initial noun phrase (NP) and a 
verb phrase (VP). The initial noun phrase is made of the simple NAME John.  
The verb phrase is composed of a verb (V) ate and an NP, which consists of an 
article (ART) the and a common noun (N) cat.  In list notation this same 
structure could be represented as 

(S (NP (NAME John)) 
 (VP (V ate) 
  (NP (ART the) 
   (N cat)))) 

Since trees play such an important role throughout this book, some 
terminology needs to be introduced. Trees are a special form of graph, which are 
structures consisting of labeled nodes (for example, the nodes are labeled S, NP, 
and so on in Figure 3.1) connected by links. They are called trees because they 
resemble upside-down trees, and much of the terminology is derived from this 
analogy with actual trees. The node at the top is called the root of the tree, while 
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the nodes at the bottom are called the leaves. We say a link points from a parent 
node to a child node. The node labeled S in Figure 3.1 is the parent node of the 
nodes labeled NP and VP, and the node labeled NP is in turn the parent node of 
the node labeled NAME. While every child node has a unique parent, a parent 
may point to many child nodes. An ancestor of a node N is defined as N’s 
parent, or the parent of its parent, and so on. A node is dominated by its ancestor 
nodes. The root node dominates all other nodes in the tree. 

To construct a tree structure for a sentence, you must know what structures 
are legal for English. A set of rewrite rules describes what tree structures are 
allowable. These rules say that a certain symbol may be expanded in the tree by a 
sequence of other symbols. A set of rules that would allow the tree structure in 
Figure 3.1 is shown as Grammar 3.2. Rule 1 says that an S may consist of an NP 
followed by a VP. Rule 2 says that a VP may consist of a V followed by an NP. 
Rules 3 and 4 say that an NP may consist of a NAME or may consist of an ART 
followed by an N. Rules 5–8 define possible words for the categories. Grammars 
consisting entirely of rules with a single symbol on the left-hand side, called the 
mother, are called context-free grammars (CFGs). CFGs are a very important 
class of grammars for two reasons: The formalism is powerful enough to 
describe most of the structure in natural languages, yet it is restricted enough so 
that efficient parsers can be built to analyze sentences. Symbols that cannot be 
further decomposed in a grammar, namely the words in the preceding example, 
are called terminal symbols. The other symbols, such as NP, VP, and S, are 
called nonterminal symbols. The grammatical symbols such as N and V that 

 

 
 

Figure 3.1   A tree representation of John ate the cat 

 
 1. S  →  NP VP 5. NAME  →  John 
 2. VP  →  V NP 6. V  →  ate 
 3. NP  →  NAME 7. ART  →  the 
 4. NP  →  ART N 8. N  →  cat 
 

Grammar 3.2   A simple grammar 
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describe word categories are called lexical symbols. Of course, many words will 
be listed under multiple categories. For example, can would be listed under V 
and N. 

Grammars have a special symbol called the start symbol. In this book, the 
start symbol will always be S. A grammar is said to derive a sentence if there is a 
sequence of rules that allow you to rewrite the start symbol into the sentence. For 
instance, Grammar 3.2 derives the sentence John ate the cat. This can be seen by 
showing the sequence of rewrites starting from the S symbol, as follows: 

S 
⇒  NP VP (rewriting S) 
⇒  NAME VP (rewriting NP) 
⇒  John VP (rewriting NAME) 
⇒  John V NP (rewriting VP) 
⇒  John ate NP (rewriting V) 
⇒  John ate ART N (rewriting NP) 
⇒  John ate the N (rewriting ART) 
⇒  John ate the cat (rewriting N) 

Two important processes are based on derivations. The first is sentence 
generation, which uses derivations to construct legal sentences. A simple gener-
ator could be implemented by randomly choosing rewrite rules, starting from the 
S symbol, until you have a sequence of words. The preceding example shows 
that the sentence John ate the cat can be generated from the grammar. The 
second process based on derivations is parsing, which identifies the structure of 
sentences given a grammar. There are two basic methods of searching. A top-
down strategy starts with the S symbol and then searches through different ways 
to rewrite the symbols until the input sentence is generated, or until all 
possibilities have been explored. The preceding example demonstrates that John 
ate the cat is a legal sentence by showing the derivation that could be found by 
this process. 

In a bottom-up strategy, you start with the words in the sentence and use 
the rewrite rules backward to reduce the sequence of symbols until it consists 
solely of S. The left-hand side of each rule is used to rewrite the symbol on the 
right-hand side. A possible bottom-up parse of the sentence John ate the cat is 

⇒  NAME ate the cat (rewriting John) 
⇒  NAME V the cat (rewriting ate) 
⇒  NAME V ART cat (rewriting the) 
⇒  NAME V ART N (rewriting cat) 
⇒  NP V ART N (rewriting NAME) 
⇒  NP V NP (rewriting ART N) 
⇒  NP VP (rewriting V NP) 
⇒  S (rewriting NP VP) 



44 CHAPTER 3 

A tree representation, such as Figure 3.1, can be viewed as a record of the 
CFG rules that account for the structure of the sentence. In other words, if you 
kept a record of the parsing process, working either top-down or bottom-up, it 
would be something similar to the parse tree representation. 

3.2 What Makes a Good Grammar 
In constructing a grammar for a language, you are interested in generality, the 
range of sentences the grammar analyzes correctly; selectivity, the range of non-
sentences it identifies as problematic; and understandability, the simplicity of 
the grammar itself. 

In small grammars, such as those that describe only a few types of 
sentences, one structural analysis of a sentence may appear as understandable as 
another, and little can be said as to why one is superior to the other. As you 
attempt to extend a grammar to cover a wide range of sentences, however, you 
often find that one analysis is easily extendable while the other requires complex 
modification. The analysis that retains its simplicity and generality as it is 
extended is more desirable. 

Unfortunately, here you will be working mostly with small grammars and 
so will have only a few opportunities to evaluate an analysis as it is extended. 
You can attempt to make your solutions generalizable, however, by keeping in 
mind certain properties that any solution should have. In particular, pay close 
attention to the way the sentence is divided into its subparts, called constituents. 
Besides using your intuition, you can apply a few specific tests, discussed here. 

Anytime you decide that a group of words forms a particular constituent, 
try to construct a new sentence that involves that group of words in a conjunction 
with another group of words classified as the same type of constituent. This is a 
good test because for the most part only constituents of the same type can be 
conjoined. The sentences in Figure 3.3, for example, are acceptable, but the 
following sentences are not: 

*I ate a hamburger and on the stove. 
*I ate a cold hot dog and well burned. 
*I ate the hot dog slowly and a hamburger. 

To summarize, if the proposed constituent doesn’t conjoin in some sentence with 
a constituent of the same class, it is probably incorrect. 

Another test involves inserting the proposed constituent into other sen-
tences that take the same category of constituent. For example, if you say that 
John’s hitting of Mary is an NP in John’s hitting of Mary alarmed Sue, then it 
should be usable as an NP in other sentences as well. In fact this is true—the NP 
can be the object of a verb, as in I cannot explain John’s hitting of Mary as well 
as in the passive form of the initial sentence Sue was alarmed by John’s hitting of 
Mary. Given this evidence, you can conclude that the proposed constituent 
appears to behave just like other NPs. 
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As another example of applying these principles, consider the two sen-
tences I looked up John’s phone number and I looked up John’s chimney. Should 
these sentences have the identical structure? If so, you would presumably analyze 
both as subject-verb-complement sentences with the complement in both cases 
being a PP. That is, up John’s phone number would be a PP. 

When you try the conjunction test, you should become suspicious of this 
analysis. Conjoining up John’s phone number with another PP, as in *I looked up 
John’s phone number and in his cupboards, is certainly bizarre. Note that I 
looked up John’s chimney and in his cupboards is perfectly acceptable. Thus 
apparently the analysis of up John’s phone number as a PP is incorrect. 

Further evidence against the PP analysis is that up John’s phone number 
does not seem usable as a PP in any sentences other than ones involving a few 
verbs such as look or thought.  Even with the verb look, an alternative sentence 
such as *Up John’s phone number, I looked is quite implausible compared to Up 
John’s chimney, I looked. 

This type of test can be taken further by considering changing the PP in a 
manner that usually is allowed. In particular, you should be able to replace the 
NP John’s phone number by the pronoun it.  But the resulting sentence, I looked 
up it, could not be used with the same meaning as I looked up John’s phone 
number.  In fact, the only way to use a pronoun and retain the original meaning is 
to use I looked it up, corresponding to the form I looked John’s phone number 
up. 

Thus a different analysis is needed for each of the two sentences. If up 
John’s phone number is not a PP, then two remaining analyses may be possible. 
The VP could be the complex verb looked up followed by an NP, or it could con-
sist of three components: the V looked, a particle up, and an NP. Either of these 
is a better solution. What types of tests might you do to decide between them? 

As you develop a grammar, each constituent is used in more and more 
different ways. As a result, you have a growing number of tests that can be per-

 
 NP-NP:  I ate a hamburger and a hot dog. 
 VP-VP:  I will eat the hamburger and throw away the hot dog. 
 S-S:  I ate a hamburger and John ate a hot dog. 
 PP-PP:  I saw a hot dog in the bag and on the stove. 
 ADJP-ADJP:  I ate a cold and well burned hot dog. 
 ADVP-ADVP:  I ate the hot dog slowly and very carefully. 
 N-N:  I ate a hamburger and hot dog. 
 V-V:  I will cook and burn a hamburger. 
 AUX-AUX:  I can and will eat the hot dog. 
 ADJ-ADJ:  I ate the very cold and burned hot dog (that is, very cold and very burned). 
 

Figure 3.3   Various forms of conjunctions 
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formed to see if a new analysis is reasonable or not. Sometimes the analysis of a 
new form might force you to back up and modify the existing grammar. This 
backward step is unavoidable given the current state of linguistic knowledge. The 
important point to remember, though, is that when a new rule is proposed for a 
grammar, you must carefully consider its interaction with existing rules. 

BOX 3.1  Generative Capacity 
Grammatical formalisms based on rewrite rules can be compared according to their 
generative capacity, which is the range of languages that each formalism can 
describe. This book is concerned with natural languages, but it turns out that no 
natural language can be characterized precisely enough to define generative capac-
ity. Formal languages, however, allow a precise mathematical characterization. 

Consider a formal language consisting of the symbols a, b, c, and d (think of 
these as words). Then consider a language L1 that allows any sequence of letters in 
alphabetical order. For example, abd, ad, bcd, b, and abcd are all legal sentences. 
To describe this language, we can write a grammar in which the right-hand side of 
every rule consists of one terminal symbol possibly followed by one nonterminal. 
Such a grammar is called a regular grammar. For L1 the grammar would be 
 S  →  a S1 S    →  d S1  →  d S3  →  d 
 S  →  b S2 S1  →  b S2 S2  →  c S3 
 S  →  c S3 S1  →  c S3 S2  →  d 

Consider another language, L2, that consists only of sentences that have a 
sequence of a’s followed by an equal number of b’s—that is, ab, aabb, aaabbb, 
and so on. You cannot write a regular grammar that can generate L2 exactly. A 
context-free grammar to generate L2, however, is simple: 
 S  →  a b S  →  a S b 

Some languages cannot be generated by a CFG. One example is the language 
that consists of a sequence of a’s, followed by the same number of b’s, followed by 
the same number of c’s—that is, abc, aabbcc, aaabbbccc, and so on. Similarly, no 
context-free grammar can generate the language that consists of any sequence of 
letters repeated in the same order twice, such as abab, abcabc, acdabacdab, and so 
on. There are more general grammatical systems that can generate such sequences, 
however. One important class is the context-sensitive grammar, which consists of 
rules of the form 
 αAβ  →  αψβ 

where A is a symbol, α and β are (possibly empty) sequences of symbols, and ψ is 
a nonempty sequence of symbols. Even more general are the type 0 grammars, 
which allow arbitrary rewrite rules. 

Work in formal language theory began with Chomsky (1956). Since the 
languages generated by regular grammars are a subset of those generated by 
context-free grammars, which in turn are a subset of those generated by context-
sensitive grammars, which in turn are a subset of those generated by type 0 
languages, they form a hierarchy of languages (called the Chomsky Hierarchy). 
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3.3 A Top-Down Parser 
A parsing algorithm can be described as a procedure that searches through 
various ways of combining grammatical rules to find a combination that gene-
rates a tree that could be the structure of the input sentence. To keep this initial 
formulation simple, we will not explicitly construct the tree. Rather, the 
algorithm will simply return a yes or no answer as to whether such a tree could 
be built. In other words, the algorithm will say whether a certain sentence is 
accepted by the grammar or not. This section considers a simple top-down pars-
ing method in some detail and then relates this to work in artificial intelligence 
(AI) on search procedures. 

A top-down parser starts with the S symbol and attempts to rewrite it into a 
sequence of terminal symbols that matches the classes of the words in the input 
sentence. The state of the parse at any given time can be represented as a list of 
symbols that are the result of operations applied so far, called the symbol list. 
For example, the parser starts in the state (S) and after applying the rule S → NP 
VP the symbol list will be (NP VP). If it then applies the rule NP → ART N, the 
symbol list will be (ART N VP), and so on. 

The parser could continue in this fashion until the state consisted entirely 
of terminal symbols, and then it could check the input sentence to see if it 
matched. But this would be quite wasteful, for a mistake made early on (say, in 
choosing the rule that rewrites S) is not discovered until much later. A better 
algorithm checks the input as soon as it can. In addition, rather than having a 
separate rule to indicate the possible syntactic categories for each word, a 
structure called the lexicon is used to efficiently store the possible categories for 
each word. For now the lexicon will be very simple. A very small lexicon for use 
in the examples is 

cried: V 
dogs: N, V 
the: ART 

With a lexicon specified, a grammar, such as that shown as Grammar 3.4, need 
not contain any lexical rules. 

Given these changes, a state of the parse is now defined by a pair: a symbol 
list similar to before and a number indicating the current position in the sentence. 

 
 1. S  →  NP VP 4. VP  →  V 
 2. NP  →  ART N 5. VP  →  V NP 
 3. NP  →  ART ADJ N 
 

Grammar 3.4 
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Positions fall between the words, with 1 being the position before the first word. 
For example, here is a sentence with its positions indicated: 

1 The 2 dogs 3 cried 4  

A typical parse state would be 

((N VP) 2) 

indicating that the parser needs to find an N followed by a VP, starting at 
position two. New states are generated from old states depending on whether the 
first symbol is a lexical symbol or not. If it is a lexical symbol, like N in the 
preceding example, and if the next word can belong to that lexical category, then 
you can update the state by removing the first symbol and updating the position 
counter. In this case, since the word dogs is listed as an N in the lexicon, the next 
parser state would be 

((VP) 3) 

which means it needs to find a VP starting at position 3. If the first symbol is a 
nonterminal, like VP, then it is rewritten using a rule from the grammar. For 
example, using rule 4 in Grammar 3.4, the new state would be 

((V) 3) 

which means it needs to find a V starting at position 3. On the other hand, using 
rule 5, the new state would be 

((V NP) 3) 

A parsing algorithm that is guaranteed to find a parse if there is one must 
systematically explore every possible new state. One simple technique for this is 
called backtracking. Using this approach, rather than generating a single new 
state from the state ((VP) 3), you generate all possible new states. One of these is 
picked to be the next state and the rest are saved as backup states. If you ever 
reach a situation where the current state cannot lead to a solution, you simply 
pick a new current state from the list of backup states. Here is the algorithm in a 
little more detail. 

A Simple Top-Down Parsing Algorithm 
The algorithm manipulates a list of possible states, called the possibilities list. 
The first element of this list is the current state, which consists of a symbol list 
and a word position in the sentence, and the remaining elements of the search 
state are the backup states, each indicating an alternate symbol-list–word-
position pair. For example, the possibilities list 

(((N) 2)  ((NAME) 1)  ((ADJ N) 1)) 
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indicates that the current state consists of the symbol list (N) at position 2, and 
that there are two possible backup states: one consisting of the symbol list 
(NAME) at position 1 and the other consisting of the symbol list (ADJ N) at 
position 1. 

The algorithm starts with the initial state ((S) 1) and no backup states. 

1. Select the current state: Take the first state off the possibilities 
list and call it C. If the possibilities list is empty, then the 
algorithm fails (that is, no successful parse is possible). 

2. If C consists of an empty symbol list and the word position is 
at the end of the sentence, then the algorithm succeeds. 

3. Otherwise, generate the next possible states. 
3.1. If the first symbol on the symbol list of C is a lexical 

symbol, and the next word in the sentence can be in that 
class, then create a new state by removing the first 
symbol from the symbol list and updating the word 
position, and add it to the possibilities list. 

3.2. Otherwise, if the first symbol on the symbol list of C is a 
non-terminal, generate a new state for each rule in the 
grammar that can rewrite that nonterminal symbol and 
add them all to the possibilities list. 

Consider an example. Using Grammar 3.4, Figure 3.5 shows a trace of the 
algorithm on the sentence The dogs cried. First, the initial S symbol is rewritten 
using rule 1 to produce a new current state of ((NP VP) 1) in step 2. The NP is 

 
 Step Current State Backup States Comment 
 1. ((S) 1)  initial position 
 2. ((NP VP) 1)  rewriting S by rule 1 
 3. ((ART N VP) 1)  rewriting NP by rules 2 & 3 
   ((ART ADJ N VP) 1) 
 4. ((N VP) 2)  matching ART with the 
   ((ART ADJ N VP) 1) 
 5. ((VP) 3)  matching N with dogs 
   ((ART ADJ N VP) 1) 
 6. ((V) 3)  rewriting VP by rules 5–8 
   ((V NP) 3) 
   ((ART ADJ N VP) 1) 
 7.   the parse succeeds as V is 
    matched to cried, leaving 
    an empty grammatical symbol 
    list with an empty sentence 
 

Figure 3.5   Top-down depth-first parse of 1 The 2 dogs 3 cried 4  
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then rewritten in turn, but since there are two possible rules for NP in the 
grammar, two possible states are generated: The new current state involves (ART 
N VP) at position 1, whereas the backup state involves (ART ADJ N VP) at 
position 1. In step 4 a word in category ART is found at position 1 of the 
sentence, and the new current state becomes (N VP). The backup state generated 
in step 3 remains untouched. The parse continues in this fashion to step 5, where 
two different rules can rewrite VP. The first rule generates the new current state, 
while the other rule is pushed onto the stack of backup states. The parse 
completes successfully in step 7, since the current state is empty and all the 
words in the input sentence have been accounted for. 

Consider the same algorithm and grammar operating on the sentence 

1 The 2 old 3 man 4 cried 5 

In this case assume that the word old is ambiguous between an ADJ and an N 
and that the word man is ambiguous between an N and a V (as in the sentence 
The sailors man the boats). Specifically, the lexicon is 

the: ART 
old: ADJ, N 
man: N, V 
cried: V 

The parse proceeds as follows (see Figure 3.6). The initial S symbol is 
rewritten by rule 1 to produce the new current state of ((NP VP) 1). The NP is 
rewritten in turn, giving the new state of ((ART N VP) 1) with a backup state of 
((ART ADJ N VP) 1). The parse continues, finding the as an ART to produce the 
state ((N VP) 2) and then old as an N to obtain the state ((VP) 3). There are now 
two ways to rewrite the VP, giving us a current state of ((V) 3) and the backup 
states of ((V NP) 3) and ((ART ADJ N) 1) from before. The word man can be 
parsed as a V, giving the state (( ) 4). Unfortunately, while the symbol list is 
empty, the word position is not at the end of the sentence, so no new state can be 
generated and a backup state must be used. In the next cycle, step 8, ((V NP) 3) 
is attempted. Again man is taken as a V and the new state ((NP) 4) generated. 
None of the rewrites of NP yield a successful parse. Finally, in step 12, the last 
backup state, ((ART ADJ N VP) 1), is tried and leads to a successful parse. 

Parsing as a Search Procedure 
You can think of parsing as a special case of a search problem as defined in AI. 
In particular, the top-down parser in this section was described in terms of the 
following generalized search procedure. The possibilities list is initially set to the 
start state of the parse. Then you repeat the following steps until you have 
success or failure: 

1. Select the first state from the possibilities list (and remove it 
from the list). 
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2. Generate the new states by trying every possible option from 
the selected state (there may be none if we are on a bad path). 

3. Add the states generated in step 2 to the possibilities list. 

For a depth-first strategy, the possibilities list is a stack. In other words, 
step 1 always takes the first element off the list, and step 3 always puts the new 
states on the front of the list, yielding a last-in first-out (LIFO) strategy. 
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In contrast, in a breadth-first strategy the possibilities list is manipulated 
as a queue. Step 3 adds the new positions onto the end of the list, rather than the 
beginning, yielding a first-in first-out (FIFO) strategy. 

We can compare these search strategies using a tree format, as in Figure 
3.7, which shows the entire space of parser states for the last example. Each node 

 
 Step Current tate Backup States Comment 
 1. ((S) 1)   

 2. ((NP VP) 1)  S rewritten to NP VP 
 3. ((ART N VP) 1)  NP rewritten producing  
   ((ART ADJ N VP) 1) two new states 
 4. ((N VP) 2)   
   ((ART ADJ N VP) 1) 
 5. ((VP) 3)  the backup state remains 
   ((ART ADJ N VP) 1) 

 6. ((V) 3) 
   ((V NP) 3) 
   ((ART ADJ N VP) 1) 

 7. (( ) 4) 
   ((V NP) 3) 
   ((ART ADJ N VP) 1) 
 8. ((V NP) 3)  the first backup is chosen 
   ((ART ADJ N VP) 1) 

 9. ((NP) 4) 
   ((ART ADJ N VP) 1) 
 10. ((ART N) 4)  looking for ART at 4 fails 
   ((ART ADJ N) 4) 
   ((ART ADJ N VP) 1) 

 11. ((ART ADJ N) 4)  fails again 
   ((ART ADJ N VP) 1) 
 12. ((ART ADJ N VP) 1)  now exploring backup state 
    saved in step 3 
 13. ((ADJ N VP) 2) 

 14. ((N VP) 3) 
 15. ((VP) 4) 

 16. ((V) 4) 
   ((V NP) 4) 

 17. (( ) 5)  success! 
 

Figure 3.6   A top-down parse of 1 The 2 old 3 man 4 cried 5 
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in the tree represents a parser state, and the sons of a node are the possible moves 
from that state. The number beside each node records when the node was 
selected to be processed by the algorithm. On the left side is the order produced 
by the depth-first strategy, and on the right side is the order produced by the 
breadth-first strategy. Remember, the sentence being parsed is 

1 The 2 old 3 man 4 cried 5  

The main difference between depth-first and breadth-first searches in this 
simple example is the order in which the two possible interpretations of the first 
NP are examined. With the depth-first strategy, one interpretation is considered 
and expanded until it fails; only then is the second one considered. With the 
breadth-first strategy, both interpretations are considered alternately, each being 
expanded one step at a time. In this example, both depth-first and breadth-first 
searches found the solution but searched the space in a different order. A depth-

 

 
 

Figure 3.7   Search tree for two parse strategies (depth-first strategy on left; breadth-first on right) 
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first search often moves quickly to a solution but in other cases may spend con-
siderable time pursuing futile paths. The breadth-first strategy explores each 
possible solution to a certain depth before moving on. In this particular example 
the depth-first strategy found the solution in one less step than the breadth-first. 
(The state in the bottom right-hand side of Figure 3.7 was not explored by the 
depth-first parse.) 

In certain cases it is possible to put these simple search strategies into an 
infinite loop. For example, consider a left-recursive rule that could be a first 
account of the possessive in English (as in the NP the man’s coat): 

NP → NP  's  N 

With a naive depth-first strategy, a state starting with the nonterminal NP would 
be rewritten to a new state beginning with NP 's N. But this state also begins with 
an NP that could be rewritten in the same way. Unless an explicit check were 
incorporated into the parser, it would rewrite NPs forever! The breadth-first 
strategy does better with left-recursive rules, as it tries all other ways to rewrite 
the original NP before coming to the newly generated state with the new NP. But 
with an ungrammatical sentence it would not terminate because it would rewrite 
the NP forever while searching for a solution. For this reason, many systems 
prohibit left-recursive rules from the grammar. 

Many parsers built today use the depth-first strategy because it tends to 
minimize the number of backup states needed and thus uses less memory and 
requires less bookkeeping. 

3.4 A Bottom-Up Chart Parser 
The main difference between top-down and bottom-up parsers is the way the 
grammar rules are used. For example, consider the rule 

NP  →  ART ADJ N 

In a top-down system you use the rule to find an NP by looking for the sequence 
ART ADJ N. In a bottom-up parser you use the rule to take a sequence ART ADJ 
N that you have found and identify it as an NP. The basic operation in bottom-up 
parsing then is to take a sequence of symbols and match it to the right-hand side 
of the rules. You could build a bottom-up parser simply by formulating this 
matching process as a search process. The state would simply consist of a symbol 
list, starting with the words in the sentence. Successor states could be generated 
by exploring all possible ways to 

• rewrite a word by its possible lexical categories 
• replace a sequence of symbols that matches the right-hand side 

of a grammar rule by its left-hand side symbol 

Unfortunately, such a simple implementation would be prohibitively expensive, 
as the parser would tend to try the same matches again and again, thus dupli-
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cating much of its work unnecessarily. To avoid this problem, a data structure 
called a chart is introduced that allows the parser to store the partial results of 
the matching it has done so far so that the work need not be reduplicated. 

Matches are always considered from the point of view of one constituent, 
called the key. To find rules that match a string involving the key, look for rules 
that start with the key, or for rules that have already been started by earlier keys 
and require the present key either to complete the rule or to extend the rule. For 
instance, consider Grammar 3.8. 

Assume you are parsing a sentence that starts with an ART. With this ART 
as the key, rules 2 and 3 are matched because they start with ART. To record this 
for analyzing the next key, you need to record that rules 2 and 3 could be 
continued at the point after the ART. You denote this fact by writing the rule 
with a dot (°), indicating what has been seen so far. Thus you record 

2´. NP  →  ART ° ADJ N 
3´. NP  →  ART ° N 

If the next input key is an ADJ, then rule 4 may be started, and the modi-
fied rule 2´ may be extended to give 

2´´. NP  →  ART ADJ ° N  

The chart maintains the record of all the constituents derived from the 
sentence so far in the parse. It also maintains the record of rules that have 
matched partially but are not complete. These are called the active arcs. For 
example, after seeing an initial ART followed by an ADJ in the preceding 
example, you would have the chart shown in Figure 3.9. You should interpret 
this figure as follows. There are two completed constituents on the chart: ART1 
from position 1 to 2 and ADJ1 from position 2 to 3. There are four active arcs 
indicating possible constituents. These are indicated by the arrows and are 
interpreted as follows (from top to bottom). There is a potential NP starting at 
position 1, which needs an ADJ starting at position 2. There is another potential 
NP starting at position 1, which needs an N starting at position 2. There is a 
potential NP starting at position 2 with an ADJ, which needs an N starting at 
position 3. Finally, there is a potential NP starting at position 1 with an ART and 
then an ADJ, which needs an N starting at position 3. 

 
 1. S  →  NP VP 
 2. NP  →  ART ADJ N 
 3. NP  →  ART N 
 4. NP  →  ADJ N 
 5. VP  →  AUX VP 
 6. VP  →  V NP 
 

Grammar 3.8   A simple context-free grammar 
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The basic operation of a chart-based parser involves combining an active 
arc with a completed constituent. The result is either a new completed constituent 
or a new active arc that is an extension of the original active arc. New completed 
constituents are maintained on a list called the agenda until they themselves are 
added to the chart. This process is defined more precisely by the arc extension 
algorithm shown in Figure 3.10. Given this algorithm, the bottom-up chart 
parsing algorithm is specified in Figure 3.11.  

As with the top-down parsers, you may use a depth-first or breadth-first 
search strategy, depending on whether the agenda is implemented as a stack or a 
queue. Also, for a full breadth-first strategy, you would need to read in the entire 
input and add the interpretations of the words onto the agenda before starting the 
algorithm. Let us assume a depth-first search strategy for the following example. 

Consider using the algorithm on the sentence The large can can hold the 
water using Grammar 3.8 with the following lexicon: 

the: ART 
large: ADJ 
can: N, AUX, V 
hold: N, V 
water: N, V 

 

 
 

Figure 3.9   The chart after seeing an ADJ in position 2 

 
 To add a constituent C from position p1 to p2: 

 1. Insert C into the chart from position p1 to p2. 
 2. For any active arc of the form X → X1 ... ° C ... Xn from position p0 to p1,  
  add a new active arc X → X1 ... C ° ... Xn from position p0 to p2. 
 3. For any active arc of the form X → X1 ... Xn ° C from position p0 to p1,  
  then add a new constituent of type X from p0 to p2 to the agenda. 
 

Figure 3.10   The arc extension algorithm 
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To best understand the example, draw the chart as it is extended at each 
step of the algorithm. The agenda is initially empty, so the word the is read and a 
constituent ART1 placed on the agenda. 

Entering ART1: (the from 1 to 2) 
 Adds active arc NP  →  ART ° ADJ N from 1 to 2 
 Adds active arc NP  →  ART ° N from 1 to 2 

Both these active arcs were added by step 3 of the parsing algorithm and were 
derived from rules 2 and 3 in the grammar, respectively. Next the word large is 
read and a constituent ADJ1 is created. 

Entering ADJ1: (large from 2 to 3) 
 Adds arc NP  →  ADJ ° N from 2 to 3 
 Adds arc NP  →  ART ADJ ° N from 1 to 3 

The first arc was added in step 3 of the algorithm. The second arc added here is 
an extension of the first active arc that was added when ART1 was added to the 
chart using the arc extension algorithm (step 4). 

The chart at this point has already been shown in Figure 3.9. Notice that 
active arcs are never removed from the chart. For example, when the arc NP → 
ART ° ADJ N from 1 to 2 was extended, producing the arc from 1 to 3, both arcs 
remained on the chart. This is necessary because the arcs could be used again in a 
different way by another interpretation. 

For the next word, can, three constituents, N1, AUX1, and V1 are created 
for its three interpretations.  

Entering N1: (can from 3 to 4) 

No active arcs are added in step 2, but two are completed in step 4 by the arc 
extension algorithm, producing two NPs that are added to the agenda: The first, 
an NP from 1 to 4, is constructed from rule 2, while the second, an NP from 2 to 
4, is constructed from rule 4. These NPs are now at the top of the agenda. 

 
 Do until there is no input left: 

 1. If the agenda is empty, look up the interpretations for the next word in the  
  input and add them to the agenda. 
 2. Select a constituent from the agenda (let’s call it constituent C from position 
  p1 to p2). 
 3. For each rule in the grammar of form X → C X1 ... Xn, add an active arc of 
  form X → ° C X1 ... Xn from position p1 to p2. 
 4. Add C to the chart using the arc extension algorithm above. 
 

Figure 3.11   A bottom-up chart parsing algorithm 
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Entering NP1: an NP (the large can from 1 to 4) 
 Adding active arc S  →  NP ° VP from 1 to 4 
Entering NP2: an NP (large can from 2 to 4) 
 Adding arc S  →  NP ° VP from 2 to 4 
Entering AUX1: (can from 3 to 4) 
 Adding arc VP  →  AUX ° VP from 3 to 4 
Entering V1: (can from 3 to 4) 
 Adding arc VP  →  V ° NP from 3 to 4 

The chart is shown in Figure 3.12, which illustrates all the completed 
constituents (NP2, NP1, ART1, ADJ1, N1, AUX1, V1) and all the uncompleted 
active arcs entered so far. The next word is can again, and N2, AUX2, and V2 
are created. 

Entering N2: (can from 4 to 5, the second can) 
 Adds no active arcs 
Entering AUX2: (can from 4 to 5) 
 Adds arc VP  →  AUX ° VP from 4 to 5 

 

 
 

Figure 3.12   After parsing the large can 
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Entering V2: (can from 4 to 5) 
 Adds arc VP  →  V ° NP from 4 to 5 

The next word is hold, and N3 and V3 are created. 

Entering N3: (hold from 5 to 6) 
 Adds no active arcs 
Entering V3: (hold from 5 to 6) 
 Adds arc VP  →  V ° NP from 5 to 6 

The chart in Figure 3.13 shows all the completed constituents built so far, 
together with all the active arcs, except for those used in the first NP. 

Entering ART2: (the from 6 to 7) 
 Adding arc NP  →  ART ° ADJ N from 6 to 7 
 Adding arc NP  →  ART ° N from 6 to 7 

 

 
 

Figure 3.13   The chart after adding hold, omitting arcs generated for the first NP 
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Entering N4: (water from 7 to 8) 
 No active arcs added in step 3 
 An NP, NP3, from 6 to 8 is pushed onto the agenda, by completing 
  arc NP  →  ART ° N from 6 to 7 
Entering NP3: (the water from 6 to 8) 
 A VP, VP1, from 5 to 8 is pushed onto the agenda, by completing 
  VP  →  V ° NP from 5 to 6 
 Adds arc S  →  NP ° VP from 6 to 8 

The chart at this stage is shown in Figure 3.14, but only the active arcs to be used 
in the remainder of the parse are shown.  

Entering VP1: (hold the water from 5 to 8) 
 A VP, VP2, from 4 to 8 is pushed onto the agenda, by completing 
  VP  →  AUX ° VP from 4 to 5 
Entering VP2: (can hold the water from 4 to 8) 
 An S, S1, is added from 1 to 8, by completing 
  arc S  →  NP ° VP from 1 to 4 
 A VP, VP3, is added from 3 to 8, by completing 
  arc VP  →  AUX ° VP from 3 to 4 
 An S, S2, is added from 2 to 8, by completing 
  arc S  →  NP ° VP from 2 to 4 

Since you have derived an S covering the entire sentence, you can stop 
successfully. If you wanted to find all possible interpretations for the sentence, 

 

 
 

Figure 3.14   The chart after all the NPs are found, omitting all but the crucial active arcs 
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you would continue parsing until the agenda became empty. The chart would 
then contain as many S structures covering the entire set of positions as there 
were different structural interpretations. In addition, this representation of the 
entire set of structures would be more efficient than a list of interpretations, 
because the different S structures might share common subparts represented in 
the chart only once. Figure 3.15 shows the final chart. 

Efficiency Considerations 
Chart-based parsers can be considerably more efficient than parsers that rely only 
on a search because the same constituent is never constructed more than once. 
For instance, a pure top-down or bottom-up search strategy could require up to 
Cn operations to parse a sentence of length n, where C is a constant that depends 
on the specific algorithm you use. Even if C is very small, this exponential 
complexity rapidly makes the algorithm unusable. A chart-based parser, on the 
other hand, in the worst case would build every possible constituent between 
every possible pair of positions. This allows us to show that it has a worst-case 
complexity of K*n3, where n is the length of the sentence and K is a constant 
depending on the algorithm. Of course, a chart parser involves more work in each 
step, so K will be larger than C. To contrast the two approaches, assume that C is 
10 and that K is a hundred times worse, 1000. Given a sentence of 12 words, the 
brute force search might take 1012 operations (that is, 1,000,000,000,000), 
whereas the chart parser would take 1000 * 123 (that is, 1,728,000). Under these 
assumptions, the chart parser would be up to 500,000 times faster than the brute 
force search on some examples! 

 

 
 

Figure 3.15   The final chart 
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3.5 Transition Network Grammars 
So far we have examined only one formalism for representing grammars, namely 
context-free rewrite rules. Here we consider another formalism that is useful in a 
wide range of applications. It is based on the notion of a transition network 
consisting of nodes and labeled arcs. One of the nodes is specified as the initial 
state, or start state. Consider the network named NP in Grammar 3.16, with the 
initial state labeled NP and each arc labeled with a word category. Starting at the 
initial state, you can traverse an arc if the current word in the sentence is in the 
category on the arc. If the arc is followed, the current word is updated to the next 
word. A phrase is a legal NP if there is a path from the node NP to a pop arc (an 
arc labeled pop) that accounts for every word in the phrase. This network recog-
nizes the same set of sentences as the following context-free grammar: 

NP  →  ART NP1 
NP1  →  ADJ NP1 
NP1  →  N 

Consider parsing the NP a purple cow with this network. Starting at the 
node NP, you can follow the arc labeled art, since the current word is an article—
namely, a.  From node NP1 you can follow the arc labeled adj using the adjective 
purple, and finally, again from NP1, you can follow the arc labeled noun using 
the noun cow.  Since you have reached a pop arc, a purple cow is a legal NP. 

Simple transition networks are often called finite state machines (FSMs). 
Finite state machines are equivalent in expressive power to regular grammars 
(see Box 3.2), and thus are not powerful enough to describe all languages that 
can be described by a CFG. To get the descriptive power of CFGs, you need a 
notion of recursion in the network grammar. A recursive transition network 
(RTN) is like a simple transition network, except that it allows arc labels to refer 
to other networks as well as word categories. Thus, given the NP network in 
Grammar 3.16, a network for simple English sentences can be expressed as 
shown in Grammar 3.17. Uppercase labels refer to networks. The arc from S to 
S1 can be followed only if the NP network can be successfully traversed to a pop 
arc. Although not shown in this example, RTNs allow true recursion—that is, a 
network might have an arc labeled with its own name. 

Consider finding a path through the S network for the sentence The purple 
cow ate the grass. Starting at node S, to follow the arc labeled NP, you need to 
traverse the NP network. Starting at node NP, traverse the network as before for 
the input the purple cow. Following the pop arc in the NP network, return to the 
S network and traverse the arc to node S1. From node S1 you follow the arc 
labeled verb using the word ate. Finally, the arc labeled NP can be followed if 
you can traverse the NP network again. This time the remaining input consists of 
the words the grass. You follow the arc labeled art and then the arc labeled noun 
in the NP network; then take the pop arc from node NP2 and then another pop 
from node S3. Since you have traversed the network and used all the words in the 
sentence, The purple cow ate the grass is accepted as a legal sentence. 
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In practice, RTN systems incorporate some additional arc types that are 
useful but not formally necessary. Figure 3.18 summarizes the arc types, together 
with the notation that will be used in this book to indicate these arc types. 
According to this terminology, arcs that are labeled with networks are called 
push arcs, and arcs labeled with word categories are called cat arcs. In addition, 
an arc that can always be followed is called a jump arc. 

Top-Down Parsing with Recursive Transition Networks 
An algorithm for parsing with RTNs can be developed along the same lines as 
the algorithms for parsing CFGs. The state of the parse at any moment can be 
represented by the following: 

current position—a pointer to the next word to be parsed. 
current node—the node at which you are located in the network. 
return points—a stack of nodes in other networks where you will 

continue if you pop from the current network. 

 

 
 

Grammar 3.16 

 

 
 

Grammar 3.17 

 
 Arc Type Example How Used 
 CAT noun succeeds only if current word is of the named category 
 WRD of succeeds only if current word is identical to the label 
 PUSH NP succeeds only if named network can be successfully traversed 
 JUMP jump always succeeds 
 POP pop succeeds and signals the successful end of the network 
 

Figure 3.18   The arc labels for RTNs 
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First, consider an algorithm for searching an RTN that assumes that if you can 
follow an arc, it will be the correct one in the final parse. Say you are in the 
middle of a parse and know the three pieces of information just cited. You can 
leave the current node and traverse an arc in the following cases: 

Case 1: If arc names word category and next word in sentence is in 
that category, 

 Then (1) update current position to start at the next word; 
  (2) update current node to the destination of the arc. 
Case 2: If arc is a push arc to a network N, 
 Then (1) add the destination of the arc onto return points; 
  (2) update current node to the starting node in 

network N. 
Case 3: If arc is a pop arc and return points list is not empty, 
 Then (1) remove first return point and make it current node. 
Case 4: If arc is a pop arc, return points list is empty and there are no 

words left, 
 Then (1) parse completes successfully. 

Grammar 3.19 shows a network grammar. The numbers on the arcs simply 
indicate the order in which arcs will be tried when more than one arc leaves a 
node. 

 

 
 

Grammar 3.19 
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Figure 3.20 demonstrates that the grammar accepts the sentence 

1 The 2 old 3 man 4 cried 5 

by showing the sequence of parse states that can be generated by the algorithm. 
In the trace, each arc is identified by the name of the node that it leaves plus the 
number identifier. Thus arc S/1 is the arc labeled 1 leaving the S node. If you 
start at node S, the only possible arc to follow is the push arc NP. As specified in 
case 2 of the algorithm, the new parse state is computed by setting the current 
node to NP and putting node S1 on the return points list. From node NP, arc 
NP/1 is followed and, as specified in case 1 of the algorithm, the input is checked 
for a word in category art. Since this check succeeds, the arc is followed and the 
current position is updated (step 3). The parse continues in this manner to step 5, 
when a pop arc is followed, causing the current node to be reset to S1 (that is, the 
NP arc succeeded). The parse succeeds after finding a verb in step 6 and 
following the pop arc from the S network in step 7. 

In this example the parse succeeded because the first arc that succeeded 
was ultimately the correct one in every case. However, with a sentence like The 
green faded, where green can be an adjective or a noun, this algorithm would fail 
because it would initially classify green as an adjective and then not find a noun 
following. To be able to recover from such failures, we save all possible backup 
states as we go along, just as we did with the CFG top-down parsing algorithm. 

Consider this technique in operation on the following sentence: 

1 One 2 saw 3 the 4 man 5 

The parser initially attempts to parse the sentence as beginning with the NP one 
saw, but after failing to find a verb, it backtracks and finds a successful parse 
starting with the NP one. The trace of the parse is shown in Figure 3.21, where at 

 
  Current Current Return Arc to be 
 Step Node Position Points Followed Comments 

 1. (S, 1, NIL) S/1 initial position 
 2. (NP, 1, (S1)) NP/1 followed push arc to NP net- 
      work, to return ultimately to S1 
 3. (NP1, 2, (S1)) NP1/1 followed arc NP/1 (the) 
 4. (NP1, 3, (S1)) NP1/2 followed arc NP1/1 (old) 
 5. (NP2, 4, (S1)) NP2/2 followed arc NP1/2 (man) since 
      NP1/1 is not applicable 
 6. (S1, 4, NIL) S1/1 the pop arc gets us back to S1 
 7. (S2, 5, NIL) S2/1 followed arc S2/1 (cried) 
 8.     parse succeeds on pop arc from S2 
 

Figure 3.20   A trace of a top-down parse 
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each stage the current parse state is shown in the form of a triple (current node, 
current position, return points), together with possible states for backtracking. 
The figure also shows the arcs used to generate the new state and backup states. 

This trace behaves identically to the previous example except in two 
places. In step 2, two arcs leaving node NP could accept the word one. Arc NP/2 
classifies one as a number and produces the next current state. Arc NP/3 
classifies it as a pronoun and produces a backup state. This backup state is 
actually used later in step 6 when it is found that none of the arcs leaving node S1 
can accept the input word the. 

Of course, in general, many more backup states are generated than in this 
simple example. In these cases there will be a list of possible backup states. 
Depending on how this list is organized, you can produce different orderings on 
when the states are examined. 

An RTN parser can be constructed to use a chart-like structure to gain the 
advantages of chart parsing. In RTN systems, the chart is often called the well-
formed substring table (WFST). Each time a pop is followed, the constituent is 
placed on the WFST, and every time a push is found, the WFST is checked 
before the subnetwork is invoked. If the chart contains constituent(s) of the type 
being pushed for, these are used and the subnetwork is not reinvoked. An RTN 
using a WFST has the same complexity as the chart parser described in the last 
section: K*n3, where n is the length of the sentence. 

° 3.6 Top-Down Chart Parsing 
So far, you have seen a simple top-down method and a bottom-up chart-based 
method for parsing context-free grammars. Each of the approaches has its advan-
tages and disadvantages. In this section a new parsing method is presented that 

 
 Step Current State Arc to be Followed Backup States 
 1. (S, 1, NIL) S/1 NIL 
 2. (NP, 1, (S1)) NP/2 (& NP/3 for backup) NIL 
 3. (NP1, 2, (S1)) NP1/2 (NP2, 2, (S1)) 
 4. (NP2, 3, (S1)) NP2/1 (NP2, 2, (S1)) 
 5. (S1, 3, NIL) no arc can be followed (NP2, 2, (S1)) 
 6. (NP2, 2, (S1)) NP2/1 NIL 
 7. (S1, 2, NIL) S1/1 NIL 
 8. (S2, 3, NIL) S2/2 NIL 
 9. (NP, 3, (S2)) NP/1 NIL 
 10. (NP1, 4, (S2)) NP1/2 NIL 
 11. (NP2, 5, (S2)) NP2/1 NIL 
 12. (S2, 5, NIL) S2/1 NIL 
 13. parse succeeds  NIL 
 

Figure 3.21   A top-down RTN parse with backtracking 



 Grammars and Parsing 67 

actually captures the advantages of both. But first, consider the pluses and 
minuses of the approaches. 

Top-down methods have the advantage of being highly predictive. A word 
might be ambiguous in isolation, but if some of those possible categories cannot 
be used in a legal sentence, then these categories may never even be considered. 
For example, consider Grammar 3.8 in a top-down parse of the sentence The can 
holds the water, where can may be an AUX, V, or N, as before. 

The top-down parser would rewrite (S) to (NP VP) and then rewrite the NP 
to produce three possibilities, (ART ADJ N VP), (ART N VP), and (ADJ N VP). 
Taking the first, the parser checks if the first word, the, can be an ART, and then 
if the next word, can, can be an ADJ, which fails. Trying the next possibility, the 
parser checks the again, and then checks if can can be an N, which succeeds. The 
interpretations of can as an auxiliary and a main verb are never considered 
because no syntactic tree generated by the grammar would ever predict an AUX 
or V in this position. In contrast, the bottom-up parser would have considered all 
three interpretations of can from the start—that is, all three would be added to the 
chart and would combine with active arcs. Given this argument, the top-down 
approach seems more efficient. 

On the other hand, consider the top-down parser in the example above 
needed to check that the word the was an ART twice, once for each rule. This 
reduplication of effort is very common in pure top-down approaches and 
becomes a serious problem, and large constituents may be rebuilt again and again 
as they are used in different rules. In contrast, the bottom-up parser only checks 
the input once, and only builds each constituent exactly once. So by this argu-
ment, the bottom-up approach appears more efficient. 

You can gain the advantages of both by combining the methods. A small 
variation in the bottom-up chart algorithm yields a technique that is predictive 
like the top-down approaches yet avoids any reduplication of work as in the 
bottom-up approaches. 

As before, the algorithm is driven by an agenda of completed constituents 
and the arc extension algorithm, which combines active arcs with constituents 
when they are added to the chart. While both use the technique of extending arcs 
with constituents, the difference is in how new arcs are generated from the 
grammar. In the bottom-up approach, new active arcs are generated whenever a 
completed constituent is added that could be the first constituent of the right-
hand side of a rule. With the top-down approach, new active arcs are generated 
whenever a new active arc is added to the chart, as described in the top-down arc 
introduction algorithm shown in Figure 3.22. The parsing algorithm is then easily 
stated, as is also shown in Figure 3.22. 

Consider this new algorithm operating with the same grammar on the same 
sentence as in Section 3.4, namely The large can can hold the water. In the 
initialization stage, an arc labeled S → ° NP VP is added. Then, active arcs for 
each rule that can derive an NP are added: NP → ° ART ADJ N, NP → ° ART N, 
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and NP → ° ADJ N are all added from position 1 to 1. Thus the initialized chart 
is as shown in Figure 3.23. The trace of the parse is as follows:  

Entering ART1 (the) from 1 to 2 
 Two arcs can be extended by the arc extension algorithm 
  NP → ART ° N from 1 to 2 
  NP → ART ° ADJ N from 1 to 2 
Entering ADJ1 (large) from 2 to 3 
 One arc can be extended 
  NP → ART ADJ ° N from 1 to 3 
Entering AUX1 (can) from 3 to 4 
 No activity, constituent is ignored 
Entering V1 (can) from 3 to 4 
 No activity, constituent is ignored 

 
 Top-Down Arc Introduction Algorithm 
 To add an arc S → C1 ... ° Ci ... Cn ending at position j, do the following: 
 For each rule in the grammar of form Ci → X1 ... Xk, recursively add the new arc 
 Ci → ° X1 ... Xk from position j to j. 

 Top-Down Chart Parsing Algorithm 
 Initialization: For every rule in the grammar of form S → X1 ... Xk, add an arc 
 labeled S → ° X1 ... Xk using the arc introduction algorithm. 
 Parsing: Do until there is no input left: 
 1. If the agenda is empty, look up the interpretations of the next word and add 
  them to the agenda. 
 2. Select a constituent from the agenda (call it constituent C). 
 3. Using the arc extension algorithm, combine C with every active arc on the 
  chart. Any new constituents are added to the agenda. 
 4. For any active arcs created in step 3, add them to the chart using the top-down 
  arc introduction algorithm. 
 

Figure 3.22   The top-down arc introduction and chart parsing algorithms 

 

  
 

Figure 3.23   The initial chart 
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Entering N1 (can) from 3 to 4 
 One arc extended and completed yielding 
  NP1 from 1 to 4 (the large can) 
Entering NP1 from 1 to 4 
 One arc can be extended 
  S → NP ° VP from 1 to 4 
 Using the top-down rule (step 4), new active arcs are added for VP 
  VP → ° AUX VP from 4 to 4 
  VP → ° V NP from 4 to 4 

At this stage, the chart is as shown in Figure 3.24. Compare this with 
Figure 3.10. It contains fewer completed constituents since only those that are 
allowed by the top-down filtering have been constructed. 

The algorithm continues, adding the three interpretations of can as an 
AUX, V, and N. The AUX reading extends the VP → ° AUX VP arc at position 4 
and adds active arcs for a new VP starting at position 5. The V reading extends 
the VP → ° V NP arc and adds active arcs for an NP starting at position 5. The N 
reading does not extend any arc and so is ignored. After the two readings of hold 
(as an N and V) are added, the chart is as shown in Figure 3.25. Again, compare 
with the corresponding chart for the bottom-up parser in Figure 3.13. The rest of 
the sentence is parsed similarly, and the final chart is shown in Figure 3.26. In 
comparing this to the final chart produced by the bottom-up parser (Figure 3.15), 

 

  
 

Figure 3.24   The chart after building the first NP 
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you see that the number of constituents generated has dropped from 21 to 13. 
While it is not a big difference here with such a simple grammar, the difference 
can be dramatic with a sizable grammar. 

It turns out in the worst-case analysis that the top-down chart parser is not 
more efficient that the pure bottom-up chart parser. Both have a worst-case 
complexity of K*n3 for a sentence of length n. In practice, however, the top-
down method is considerably more efficient for any reasonable grammar. 

 

 
 

Figure 3.25   The chart after adding hold, omitting arcs generated for the first NP 

 

 
 

Figure 3.26   The final chart for the top-down filtering algorithm 
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° 3.7 Finite State Models and Morphological Processing 
Although in simple examples and small systems you can list all the words 
allowed by the system, large vocabulary systems face a serious problem in repre-
senting the lexicon. Not only are there a large number of words, but each word 
may combine with affixes to produce additional related words. One way to 
address this problem is to preprocess the input sentence into a sequence of mor-
phemes. A word may consist of single morpheme, but often a word consists of a 
root form plus an affix. For instance, the word eaten consists of the root form eat 
and the suffix -en, which indicates the past participle form. Without any pre-
processing, a lexicon would have to list all the forms of eat, including eats, 
eating, ate, and eaten. With preprocessing, there would be one morpheme eat 
that may combine with suffixes such as -ing, -s, and -en, and one entry for the 
irregular form ate. Thus the lexicon would only need to store two entries (eat and 
ate) rather than four. Likewise the word happiest breaks down into the root form 

BOX 3.2  Generative Capacity of Transition Networks 
Transition network systems can be classified by the types of languages they can 
describe. In fact, you can draw correspondences between various network systems 
and rewrite-rule systems. For instance, simple transition networks (that is, finite 
state machines) with no push arcs are expressively equivalent to regular 
grammars—that is, every language that can be described by a simple transition 
network can be described by a regular grammar, and vice versa. An FSM for the 
first language described in Box 3.1 is 

S2

b

S4

d

S3

c

S5

pop

S1

a

jump jump jump

b

d

c

 
Recursive transition networks, on the other hand, are expressively equivalent to 

context-free grammars. Thus an RTN can be converted into a CFG and vice versa. 
A recursive transition network for the language consisting of a number of a’s 
followed by an equal number of b’s is 

S S1 S2

a b pop

S  
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happy and the suffix -est, and thus does not need a separate entry in the lexicon. 
Of course, not all forms are allowed; for example, the word seed cannot be 
decomposed into a root form se (or see) and a suffix -ed. The lexicon would have 
to encode what forms are allowed with each root. 

One of the most popular models is based on finite state transducers 
(FSTs), which are like finite state machines except that they produce an output 
given an input. An arc in an FST is labeled with a pair of symbols. For example, 
an arc labeled i:y could only be followed if the current input is the letter i and the 
output is the letter y. FSTs can be used to concisely represent the lexicon and to 
transform the surface form of words into a sequence of morphemes. Figure 3.27 
shows a simple FST that defines the forms of the word happy and its derived 
forms. It transforms the word happier into the sequence happy +er and happiest 
into the sequence happy +est. 

Arcs labeled by a single letter have that letter as both the input and the 
output. Nodes that are double circles indicate success states, that is, acceptable 
words. Consider processing the input word happier starting from state 1. The 
upper network accepts the first four letters, happ, and copies them to the output. 
From state 5 you could accept a y and have a complete word, or you could jump 
to state 6 to consider affixes. (The dashed link, indicating a jump, is not formally 
necessary but is useful for showing the break between the processing of the root 
form and the processing of the suffix.) For the word happier, you must jump to 
state 6. The next letter must be an i, which is transformed into a y. This is 
followed by a transition that uses no input (the empty symbol ε) and outputs a 
plus sign. From state 8, the input must be an e, and the output is also e. This must 
be followed by an r to get to state 10, which is encoded as a double circle 
indicating a possible end of word (that is, a success state for the FST). Thus this 
FST accepts the appropriate forms and outputs the desired sequence of 
morphemes. 

The entire lexicon can be encoded as an FST that encodes all the legal 
input words and transforms them into morphemic sequences. The FSTs for the 
different suffixes need only be defined once, and all root forms that allow that 

 

 
 

Figure 3.27   A simple FST for the forms of happy 
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suffix can point to the same node. Words that share a common prefix (such as 
torch, toss, and to) also can share the same nodes, greatly reducing the size of the 
network. The FST in Figure 3.28 accepts the following words, which all start 
with t: tie (state 4), ties (10), trap (7), traps (10), try (11), tries (15), to (16), 
torch (19), torches (15), toss (21), and tosses (15). In addition, it outputs the 
appropriate sequence of morphemes. 

Note that you may pass through acceptable states along the way when 
processing a word. For instance, with the input toss you would pass through state 
15, indicating that to is a word. This analysis is not useful, however, because if to 
was accepted then the letters ss would not be accounted for. 

Using such an FST, an input sentence can be processed into a sequence of 
morphemes. Occasionally, a word will be ambiguous and have multiple different 
decompositions into morphemes. This is rare enough, however, that we will 
ignore this minor complication throughout the book. 

° 3.8 Grammars and Logic Programming 
Another popular method of building a parser for CFGs is to encode the rules of 
the grammar directly in a logic programming language such as PROLOG. It turns 
out that the standard PROLOG interpretation algorithm uses exactly the same 
search strategy as the depth-first top-down parsing algorithm, so all that is 
needed is a way to reformulate context-free grammar rules as clauses in 
PROLOG. Consider the following CFG rule: 

S  →  NP VP 

 

 
 

Figure 3.28   A fragment of an FST defining some nouns (singular and plural) 
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This rule can be reformulated as an axiom that says, “A sequence of words 
is a legal S if it begins with a legal NP that is followed by a legal VP.” If you 
number each word in a sentence by its position, you can restate this rule as: 
“There is an S between position p1 and p3, if there is a position p2 such that 
there is an NP between p1 and p2 and a VP between p2 and p3.” In PROLOG this 
would be the following axiom, where variables are indicated as atoms with an 
initial capitalized letter: 

s(P1, P3)  :–  np(P1, P2), vp(P2, P3) 

To set up the process, add axioms listing the words in the sentence by their 
position. For example, the sentence John ate the cat is described by 

word(john, 1, 2) 
word(ate, 2, 3) 
word(the, 3, 4) 
word(cat, 4, 5) 

The lexicon is defined by a set of predicates such as the following: 

isart(the) 
isname(john) 
isverb(ate) 
isnoun(cat) 

Ambiguous words would produce multiple assertions—one for each syntactic 
category to which they belong. 

For each syntactic category, you can define a predicate that is true only if 
the word between the two specified positions is of that category, as follows: 

n(I, O)  :–  word(Word, I, O), isnoun(Word) 
art(I, O)  :–  word(Word, I, O), isart(Word) 
v(I, O)  :–  word(Word, I, O), isverb(Word) 
name(I, O)  :–  word(Word, I, O), isname(Word) 

Using the axioms in Figure 3.29, you can prove that John ate the cat is a 
legal sentence by proving s(1, 5), as in Figure 3.30. In Figure 3.30, when there is 
a possibility of confusing different variables that have the same name, a prime (´) 
is appended to the variable name to make it unique. This proof trace is in the 
same format as the trace for the top-down CFG parser, as follows. The state of 
the proof at any time is the list of subgoals yet to be proven. Since the word 
positions are included in the goal description, no separate position column need 
be traced. The backup states are also lists of subgoals, maintained automatically 
by a system like PROLOG to implement backtracking. A typical trace of a proof 
in such a system shows only the current state at any time. 

Because the standard PROLOG search strategy is the same as the depth-first 
top-down paring strategy, a parser built from PROLOG will have the same com-
putational complexity, Cn, that is, the number of steps can be exponential in the 
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length of the input. Even with this worst-case analysis, PROLOG-based grammars 
can be quite efficient in practice. It is also possible to insert chart-like 
mechanisms to improve the efficiency of a grammar, although then the simple 
correspondence between context-free rules and PROLOG rules is lost. Some of 
these issues will be discussed in the next chapter. 

It is worthwhile to try some simple grammars written in PROLOG to better 
understand top-down, depth-first search. By turning on the tracing facility, you 
can obtain a trace similar in content to that shown in Figure 3.30. 

 
 1. s(P1, P3)  :–  np(P1, P2), vp(P2, P3) 
 2. np(P1, P3)  :–  art(P1, P2), n(P2, P3) 
 3. np(P1, P3)  :–  name(P1, P3) 
 4. pp(P1, P3)  :–  p(P1, P2), np(P2, P3) 
 5. vp(P1, P2)  :–  v(P1, P2) 
 6. vp(P1, P3)  :–  v(P1, P2), np(P2, P3) 
 7. vp(P1, P3)  :–  v(P1, P2), pp(P2, P3) 
 

Figure 3.29   A PROLOG-based representation of Grammar 3.4 

 
 Step Current State Backup States Comments 

 1. s(1, 5) 

 2. np(1, P2) vp(P2, 5) 

 3. art(1, P2´) n(P2´, P2) vp(P2, 5) name(1, P2) vp(P2, 5) fails as no ART at 
     position 1 

 4. name(1, P2) vp(P2, 5) 

 5. vp(2, 5)  name(1, 2) proven 

 6. v(2, 5) v(2, P2) np(P2, 5) fails as no verb spans 
   v(2, P2) pp(P2, 5) positions 2 to 5 

 7. v(2, P2) np(P2, 5) v(2, P2) pp(P2, 5) 

 8. np(3, 5) v(2, P2) pp(P2, 5) v(2, 3) proven 

 9. art(3, P2) n(P2, 5) name(3, 5) 
   v(2, P2) pp(P2, 5) 

 10. n(4, 5) name(3, 5) art(3, 4) proven 
   v(2, P2) pp(P2, 5) 

 11. √ proof succeeds name(3, 5) n(4, 5) proven 
   v(2, P2) pp(P2, 5) 
 

Figure 3.30   A trace of a PROLOG-based parse of John ate the cat 
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Summary 
The two basic grammatical formalisms are context-free grammars (CFGs) and 
recursive transition networks (RTNs). A variety of parsing algorithms can be 
used for each. For instance, a simple top-down backtracking algorithm can be 
used for both formalisms and, in fact, the same algorithm can be used in the 
standard logic-programming-based grammars as well. The most efficient parsers 
use a chart-like structure to record every constituent built during a parse. By 
reusing this information later in the search, considerable work can be saved. 

Related Work and Further Readings 
There is a vast literature on syntactic formalisms and parsing algorithms. The 
notion of context-free grammars was introduced by Chomsky (1956) and has 
been studied extensively since in linguistics and in computer science. Some of 
this work will be discussed in detail later, as it is more relevant to the material in 
the following chapters. 

Most of the parsing algorithms were developed in the mid-1960s in com-
puter science, usually with the goal of analyzing programming languages rather 
than natural language. A classic reference for work in this area is Aho, Sethi, and 
Ullman (1986), or Aho and Ullman (1972), if the former is not available. The 
notion of a chart is described in Kay (1973; 1980) and has been adapted by many 
parsing systems since. The bottom-up chart parser described in this chapter is 
similar to the left-corner parsing algorithm in Aho and Ullman (1972), while the 
top-down chart parser is similar to that described by Earley (1970) and hence 
called the Earley algorithm. 

Transition network grammars and parsers are described in Woods (1970; 
1973) and parsers based on logic programming are described and compared with 
transition network systems in Pereira and Warren (1980). Winograd (1983) 
discusses most of the approaches described here from a slightly different per-
spective, which could be useful if a specific technique is difficult to understand. 
Gazdar and Mellish (1989a; 1989b) give detailed descriptions of 
implementations of parsers in LISP and in PROLOG. In addition, descriptions of 
transition network parsers can be found in many introductory AI texts, such as 
Rich and Knight (1992), Winston (1992), and Charniak and McDermott (1985). 
These books also contain descriptions of the search techniques underlying many 
of the parsing algorithms. Norvig (1992) is an excellent source on AI 
programming techniques. 

The best sources for work on computational morphology are two books: 
Sproat (1992) and Ritchie et al. (1992). Much of the recent work on finite state 
models has been based on the KIMMO system (Koskenniemi, 1983). Rather than 
requiring the construction of a huge network, KIMMO uses a set of FSTs which 
are run in parallel; that is, all of them must simultaneously accept the input and 
agree on the output. Typically, these FSTs are expressed using an abstract 
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language that allows general morphological rules to be expressed concisely. A 
compiler can then be used to generate the appropriate networks for the system. 

Finite state models are useful for a wide range of processing tasks besides 
morphological analysis. Blank (1989), for instance, is developing a grammar for 
English using only finite state methods. Finite state grammars are also used 
extensively in speech recognition systems. 

Exercises for Chapter 3 
1. (easy) 

a. Express the following tree in the list notation in Section 3.1. 

b. Is there a tree structure that could not be expressed as a list structure? 
How about a list structure that could not be expressed as a tree? 

2. (easy)  Given the CFG in Grammar 3.4, define an appropriate lexicon and 
show a trace in the format of Figure 3.5 of a top-down CFG parse of the 
sentence The man walked the old dog. 

3. (easy)  Given the RTN in Grammar 3.19 and a lexicon in which green can 
be an adjective or a noun, show a trace in the format of Figure 3.21 of a 
top-down RTN parse of the sentence The green faded. 

4. (easy)  Given the PROLOG-based grammar defined in Figure 3.29, show a 
trace in the format of Figure 3.30 of the proof that the following is a legal 
sentence: The cat ate John. 

5. (medium)  Map the following context-free grammar into an equivalent 
recursive transition network that uses only three networks—an S, NP, and 
PP network. Make your networks as small as possible. 
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S  →  NP VP NP2  →  ADJ NP2 
VP  →  V NP2  →  NP3 PREPS 
VP  →  V NP NP3  →  N 
VP  →  V PP PREPS  →  PP 
NP  →  ART NP2 PREPS  →  PP PREPS 
NP  →  NP2 PP  →  NP 
NP2  →  N 

6. (medium)  Given the CFG in Exercise 5 and the following lexicon, con-
struct a trace of a pure top-down parse and a pure bottom-up parse of the 
sentence The herons fly in groups.  Make your traces as clear as possible, 
select the rules in the order given in Exercise 5, and indicate all parts of the 
search. The lexicon entries for each word are 

the:  ART 
herons:  N 
fly:  N V ADJ 
in:  P 
groups:  N V 

7. (medium)  Consider the following grammar: 

S  →  ADJS N 
S  →  N 
ADJS  →  ADJS ADJ 
ADJS  →  ADJ 

Lexicon:  ADJ: red, N: house 

a. What happens to the top-down depth-first parser operating on this 
grammar trying to parse the input red red? In particular, state 
whether the parser succeeds, fails, or never stops. 

b. How about a top-down breadth-first parser operating on the same 
input red red?  

c. How about a top-down breadth-first parser operating on the input red 
house? 

d. How about a bottom-up depth-first parser on red house? 

e. For the cases where the parser fails to stop, give a grammar that is 
equivalent to the one shown in this exercise and that is parsed 
correctly. (Correct behavior includes failing on unacceptable phrases 
as well as succeeding on acceptable ones.) 

f. With the new grammar in part (e), do all the preceding parsers now 
operate correctly on the two phrases red red and red house? 
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8. (medium)  Consider the following CFG: 

S  →  NP V 
S  →  NP AUX V 
NP  →  ART N 

Trace one of the chart parsers in processing the sentence 

1 The 2 man 3 is 4 laughing 5 

with the lexicon entries: 

the:  ART 
man:  N 
is:  AUX 
laughing:  V 

Show every step of the parse, giving the parse stack, and drawing the chart 
each time a nonterminal constituent is added to the chart. 

9. (medium)  Consider the following CFG that generates sequences of letters: 

s  →  a  x  c 
s  →  b  x  c 
s  →  b  x  d 
s  →  b  x  e 
s  →  c  x  e 
x  →  f  x 
x  →  g 

a. If you had to write a parser for this grammar, would it be better to 
use a pure top-down or a pure bottom-up approach? Why? 

b. Trace the parser of your choice operating on the input bffge. 

10. (medium)  Consider the following CFG and RTN:  
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NP  →  ART NP1 
NP1  →  ADJ N PPS 
PPS  →  PP 
PPS  →  PP PPS 
PP  →  P NP 

a. State two ways in which the languages described by these two gram-
mars differ. For each, give a sample sentence that is recognized by 
one grammar but not the other and that demonstrates the difference. 

b. Write a new CFG equivalent to the RTN shown here. 

c. Write a new RTN equivalent to the CFG shown here. 

11. (hard)  Consider the following sentences: 

List A List B 

i. Joe is reading the book. i. *Joe has reading the book. 
ii. Joe had won a letter. ii. *Joe had win. 
iii. Joe has to win. iii. *Joe winning. 
iv. Joe will have the letter. iv. *Joe will had the letter. 
v. The letter in the book was read. v. *The book was win by Joe. 
vi. The letter must have been in  vi. *Joe will can be mad. 
  the book by Joe.  
vii. The man could have had one. vii. *The man can have having one. 

a. Write a context-free grammar that accepts all the sentences in list A 
while rejecting the sentences in list B. You may find it useful to 
make reference to the grammatical forms of verbs discussed in 
Chapter 2. 

b. Implement one of the chart-based parsing strategies and, using the 
grammar specified in part (a), demonstrate that your parser correctly 
accepts all the sentences in A and rejects those in B. You should 
maintain enough information in each entry on the chart so that you 
can reconstruct the parse tree for each possible interpretation. Make 
sure your method of recording the structure is well documented and 
clearly demonstrated. 

c. List three (distinct) grammatical forms that would not be recognized 
by a parser implementing the grammar in part (a). Provide an 
example of your own for each of these grammatical forms. 



 

 

 


