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» f Deductive reasoning in a question answering system could in principle be left

‘!’;?z entirely to uniform inference methods such as resolution or natural deduction.

‘Zk\ However, more efficient special methods are needed for determining certain

M:f(, | kinds of relationships which people seem to grasp ‘without thinking’. These

* }3 include relationships among types (such as person, girl, and computer), among

" }' , parts (such as Canada, Alberta, and Alaska), among colours (such as brown,

T tan, and orange), and among times (such as the times of the Apollo 11
mission, the first moonwalk, and the first space shuttle launch). We outline

special graphical and geometric methods for determining such relationships
efficiently. The times required are often nearly constant and the storage costs
linear in the number of relevant facts stored. Such special methods can be
combined siraightforwardly and uniformly with a general deduction algorithm.

Based on the paper, Determining Type. Part, Color,
and Time Relationships, L. Schubert, M. Papalaskaris, and J. Taugher,
appearing in COMPUTER, Volume 16, Number 10, October, 1983.
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9.1. Introduction

At the University of Alberta, we are trying to
construct a system with enough commonsense knowledge, and
fluency in English, to be able to answer simple questions about
a wide range of mundane subjects.!® We' would like the
system to respond quickly, and to remain structurally
comprehensible, no matter how large or varied its knowledge
base. Thus our emphasis has been on the generality of both the
knowledge representation and of the way in which knowledge
is organized for efficient selective access (Schubert. Goebel, and
Cercone. 1979), (Covington and Schubert, 1980), (deHaan,
1986).

We will be concerned here with several kinds of inference
problems, problems which arise constantly in question-answering

processes and, without special handling, can

absorb large
computational resources.

One kind requires determining how
two types of things are related, for example. whether "person"
subsumes ‘“girl", or whether ‘girl" is incompatible with
"computer”; others require determining similar taxonomic or
ordering relationships amdng parts of objects, colours, or times.
These relationships are of fundamental importance in our
perception and conception of the world, and it seems likely
that we are specially equipped to deal with them efficiently.
To match our cognitive skills, Al systems will need analogous
special methods.

The special methods we shall describe are designed to
supplement a deductive question-answering algorithm which is
now operational (deHaan. 1986), (deHaan and Schubert, 1986).
The algorithm draws on a base of logical propositions organized
as a semantic net. The net permits selective access to the
contents of individual 'mental worlds’ and narratives, to sets of
entities of any specified type, and to propositions involving any
specified entity and classified under any specified topic. For

\

190uestions are at present posed logically, the English front end being
incomplete. Our approach to parsing, interpretation, and generation of English is

described in (Schubert and Pelletier, 1982), (Schubert, 1982), (Schubert, 1984),
(Bailes, 1986).
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9 Accelerating Deductive Inference 189

example, if the story "Little Red Riding Hood" is inserted into
the net (in logical form). the set of all propositions concerned
with the wolf’s appearance can be separately a\nd efficiently
retrieved. More narrowly. just the propositions concerned with
the wolf's colour (a subtopic of appearance) can be selected.
Using other topical categories. propositions describing feeding
episodes, character traits, and so on. of the wolf or of any
other particular or generic concept can be efficiently accessed.

The net syntax permils storage of arbitrary first-order or
higher-order formulas, put the deductive algorithm requires
stored propositions to be in clause form. (The input routines
which convert quantified, arbitrarily connected first-order
formulas into clauses also permit modal operators such as
"necessarily” and 'believes’, generating a type of modal clause
form: however. the deductive algorithm currently does not deal
with modal operators.) The choice of clause form was not
motivated by any prior commitment 10 resolution, but rather
by the requirements of the topical classification algorithm on
the one hand and the objective of minimizing equivalence
inferencing’ (for example, inferring A — -8 from B - -A) on
the other. Nevertheless, this choice of canonical form has made
it natural to rely on resolution as the main inference rule.

The deductive algorithm for answering yes-no questions
concurrently tries to refute the clauses corresponding to the
given question (for 2 "no" answer) and the clauses
corresponding to its negation (for a '"yes" answer).  The
resolution control strategy incorporates set-of -support and unit
preference, but unlike standard strategies. trades off resolving
against retrieval of additional information, and generally
restricts resolving to pairs of clauses lying on a common path
in a concept hierarchy and classified under the same topic.
Most importantly for present purposes. it provides for the use
of special methods 10 simplify clauses and to resolve and
factor them.

We have described our system as a semantic net. In
doing so, we are not speaking from a particular camp . We
velieve that the issues we are addressing are bound to arise in
any general knowledge representation sooner or later, whether it
is based on semantic nets, frames, scripts. production systems,
or anything else. These nominally disparate formalisms have
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much in common and are in the process of converging further;

for example, all incorporate a predicate-logic-like propositional
language, all provide ways of ‘clustering’ information so that
the information brought to bear on a given task at a given
time can be sharply limited, and all have (or are to be
furnished with) property inheritance mechanisins.

9.2. Recognizing type relationships

We believe that by steering our inference algorithm along
‘vertical’ paths in type hierarchies and keeping it topically
focused, we have done about as much as can be done to ease
the computational burden of any general inference algorithm.
By radically limiting the set of propositions allowed into the
reasoning mill at any time, our strategy helps to prevent the
combinatorial explosions which are apt to bring the mill to a
halt.

This is not enough for fast question answering, however.
For, if all possible derivations of the answer to a question are
long, then any general reasoning strategy will probably do a
great deal of searching before finding one, even when working
with a small set of propositions.

It turns out that standard deductive derivations of the

answers to many simple questions are indeed rather long.
Consider the question

Whom does Mary love?
and assume that its logical form?? is
?3x[[x person] & [Mary loves x]].

The desired answer is the set of persons Mary is known to
love.  Now suppose that the system finds, by retrieval of
information about Mary under the topic “emotional attitudes"
that Mary loves John, and also that she loves her prize orchid

i
—

2oWe use predicate infix form as an aid to readability, with the predicate

symbol following its first argument and followed by the remaining arguments,
if any.
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9 Accelerating Deductive Inference 191

plant. It remains to confirm that John is a person (and
therefore a suitable answer) while the orchid is not.  The
former subproblem is not too taxing, assuming that the system
has the facts k

[John boyl,
Vx [[x boy] — [x person]]

at its disposal, and these are selected as relevant. Showing
that the orchid is not a person, though, is harder than it ought
to be. The following sort of inference chain is required (where
o is the beloved orchid):

1. [o orchid] known
2. Vx[Ix orchid] — [x soft-stemmed—plant]] known
3. [o soft-stemmed-plant] from 1,2
4. VUx[[x soft—stemmed—plant] — [x plant]] known
5. [o plant] from 3,4
6. Vx[[x person] — [x creature]] known
7. Vx[[x creature] — =[x plant]] known
8. Vx[[x person] — ~[x pilant]] from 6,7
9. =[o person] from 5,8

This is not a worst-case example; if, for example, Mary also
loves her piano, more steps will be required to rule it out as a
candidate answer, assuming that “creature" leads upward to
"living-thing" in the taxonomy of types, while "piano’ leads to
"musical-instrument”, hence to ‘“artifact”, and hence to
"nonliving-thing", known to preclude "living-thing".

Subproblems of this kind arise constantly in question-
answering processes and, without special handling, can absorb
large computational resources. Yet one feels that subproblems
such as establishing the non-personhood of an orchid should not
detain the reasoning system significantly.

In essence, we wish to be able to perform type
compatibility checks for pairs of type concepts quickly. For
example, we should be able to confirm the truth of [o plant]
or the falsity of =[o creature] instantly once [0 orchid] has
been stored. In other words, we should be able to evaluate
certain literals quickly. Similarly, we should be able to
‘resolve’ the pair of formulas

[o orchid]
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192 The Knowledge Frontier:
=[x person] v [x creature] (=6, in clouse form)

directly to obtain =[o person]; likewise, we should be be able
to ‘resolve’ the pair of formulas

[o orechid] ,
=[x creature] v =[x plant] (=7, in clause form)

directly to obtain -[o creature]. Note that the first example of
generalized resolving is based on the incompatibility of "being
an orchid" and "being a creature”, while the second is based on
the incompatibility of "being an orchid" and "not being a plant",
that is, the subordination of "being an orchid" by "being a
plant”.

With such methods, proofs such as 1-9 above could be
‘short-circuited’, reducing them to a single step. The potential
usefulness of evaluation and generalized resolving is apparent in
all of the special domains we consider. This has been a
recurrent theme in the knowledge representation and deduction
literature (for example, (Papalaskaris and Schubert, 1982),
(Brachman, Fikes, and Levesque, 1983), (Stickel, 1983)); much
the same idea has motivated the design of sortal logics for Al
purposes (for example, (McSkimmin and Minker, 1979),
(Walther, 1983), and (Stickel, 1983) offers a unified view of
evaluation and generalized resolving, under the rubric "theory
resolution" (see section 9.6)).

An obvious method for determining type relations is to
pursue upward paths in the type graph -- which we assume to
be set apart from other information in the net in any case --
until the paths intersect. If the point of intersection coincides
with the point of origin of one of the paths, then the concept
at that point of origin is superordinate to the other; (for
example, paths from "girl" and ‘"creature" will intersect at
"creature”, so that "creature” is superordinate to "girl"). In all
other cases the concepts are incompatible. (Or are they?...see
below). This idea can be implemented as graph algorithms (for
example, (Fahlman, 1979)) or as special theorem proving
strategies (for example, (Bundy, Byrd. and Mellish, 1982),
(Tenenberg, 1985), (Rich, 1985)).

Two comments are in order about such methods, First, it
is not always clear in graphical approaches what the intended
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9 Accelerating Deductive Inference 193 "

interpretation of type graphs is. In particular, it is often HEELE S e g
. unclear whether concepts lying on divergent branches of a
@l graph are to be regarded as incompatible. For example, if there bt
P are separate arcs running upward from "plant” and "creature” to ; 1
4 "living-thing", are we entitled to conclude that no plant is a ‘ H
1 creature? If yes, then by the same token, if there are arcs ;
running upward from "novelist" and "poet" to "writer", can we , :
conclude that no novelist is a poet? Moreover, the subcategories !
of a concept node may or may not be regarded as jointly
exhaustive, and this affects what may be inferred. For example,
if a microbe is known to be a living thing but not a plant,
then the conclusion that a microbe is a creature is warranted i
just in case the subcategorization of living things into plants b
and creatures is interpreted as being exhaustive. Such issues i '
can be clarified by relating type graphs to standard logical "
representations. ﬁ“ :
i
6

Z il

The second comment is that step-by-step tracing of
superordination relationships may be a rather clumsy solution
to our problem, in that constant-time methods may be possible. F o
For example, by precomputing the transitive closure of an . ﬁ i
acyclic type graph., we could achieve constant-lime testing of o
subtype-supertype relationships (although we would rather [3;
avoid the quadratic storage costs this method can entail). Our
N own method, though closely related to path intersection
1 methods, entirely avoids path traversals and (under -certain
assumptions) determines type relationships in constant time.

Type graphs specifying arbitrary subordination chains and
incompatibilities can be "defined quite conveniently in terms of
a single partitioning relation § such that

[T§T, .. Tl .

EAREI: ol

.means that type concept T is partitioned into the k mutually
incompatible, jointly exhaustive subtypes T,....T,. The
possibility that a partitioning is non-exhaustive can be taken
care of by introducing a remainder type T, denoting all things
of type T not covered by T,..T,,. T, may happen to
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denote the null concept (= universally false predicate).?! When
subtypes are not considered incompatible, this can be expressed
by means of multiple partitioning assertions. For example, the
following says that novelists and poets are necessarily writers,
without making any commitment about possible incompatibility:

i
[writer § novelist T], [writer § poet T’].

where T and T are the remainder categories (T = Ax [[x
writer] & =[x novelist]], and similarly for T'). Sets of such
partitioning assertions can be drawn as graphs, as illustrated in
Figure 9-1 (discussed more fully below). The named nodes
represent type concepts, while each T-shaped connection from a
superordinate node to a set of subordinate nodes represents a
§-assertion.

The graph in Figure 9-1 is a hierarchy. having a unique
root (Viz., the most general type of concept covered by the
hierarchy) and just ome partitioning assertion subdividing each
of its nonterminal nodes.

In general, a given set of §-assertions certainly need not
form a hierarchy, but may define an arbitrarily complex graph.
It would be gratifying indeed to have an efficient algorithm
for testing concept compatibility and subordination in this
general case (where an efficient method is one which requires
linear storage and at worst linear time relative to the number
of nodes and §-assertions of a graph).  Unfortunately, the
prospect of finding such an algorithm is very slim, since doing
so would require solving the famous unsolved problem "P=NP?"
affirmatively (Schubert, 1979).

Accordingly we have sought methods which, though
limited in theory, work well for the kinds of taxonomies we
are actually able to construct. In particular, the following is a
simple type checking scheme we have implemented. The

21We would like to interpret types related by § as necessarily incompatible,
necessarily subordinate % the head type, but not necessarily jointly exhaustive
(only as a matter of fact). Thus [ape § gibbon orangutan chimpanzee gorilla) is
true, even though there are conceivable types of apes coinciding with none of
the four actual types. However, we will not be concerned with modal logic
herein,

o Lt h s o a
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Figure 9-1: A Partitioning Hierarchy for Physical Objects.

Each vertical bar corresponds to a partitioning of a type of
object into subtypes; for example, [living-thing § plant
creature). Some of the ’‘number brackets’ based on preorder
numbering of the hierarchy are shown. These allow
determination of subordination and exclusion relationships inf
constant time. For example, "orchid” is subordinate to “plant”
since (30,30) is included in (3,52), and incompatible with
"person” since (30,30) and (54,64) are disjoint.

partitioning graph for types is first decomposed into a set of
partitioning hierarchies. The hierarchies are allowed to intersect,
but each type concept is assumed to participate in just a few
of them. This assumption

is based on attempts to sketch
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. #

N taxonomies of physical objects. virtual objects (shadows, ]
E rainbows, reflections, ...), regions (borders, interiors, holes, ...), ¥
i1 J'% ; substances, events, . perceptual/conceptual entities (thoughts,

g% fears, pains, ...). symbolic/linguistic entities (words, musical

S scores,  equations, ...), socio-political entities (families, k
g committees, nations, ...), and a few other ‘ontelogical categories’.

il 3 In the case of physical objects (Figure 9-1), we can see no
¢ reason for having more than one major hierarchy, but in the ’

case of substances, for example, we can construct two
alternative. equally natural hierarchies, based respectively on
naively scientific criteria (for example, plant substance versus
animal substance), and on the ‘normal states’ of substances (for
example, solid versus fluid) (Figure 9-2). The hierarchies 3
intersect at the level of specific substances (leaf nodes),
although we have drawn them separately and omitted much of
their lower-level structure for the sake of clarity. It is perhaps
possible to classify substances in still another way, namely
according to their normal role or use (for example, foods,
solvents, building materials, explosives, etc.), but beyond that, *
there seem to be few plausible alternatives.

Each concept has attached to it a short list of hierarchy
indicators, where each hierarchy indicator consists of an
identifier for a hierarchy to which the concept belongs along
with the concept’s 'number bracket’ relative to that hierarchy.
The number bracket consists of the preorder number of the ﬁ,

3
b

& i

L
.—"l'-

node and the maximal preorder number among its descendants
in the hierarchy (refer again to Figure 9-1). It is easy to show
that if one node is an ancestor of another, its number bracket
(regarded as an interval) contains that of the other. If neither
is an ancestor of the other, the number brackets are disjoint.22 ¥

22See, for example, (Aho, Hopcroft, and Uliman, 1983) for a discussion of
preorder traversal of trees. An alternative scheme is to number leaf nodes lefi-
to-right, and to label non-leaf nodes with the minimal and maximal leaf s
numbers they dominate. The advantage of preorder numbering is that each 1
terminal and non-terminal node is indexable by a single number. For
sufficiently small hierarchies with bounded fanout one could also use bit string
representations of mnodes (for example, x0000, x0001, x0010, .. for the
successors of a node x), with the advantage that lowest common ancestors
could be easily determined.

o




9 Accelerating Deductive Inference 197
blood
body fluid ———fymeh
L sl milk bone salnva
anmmat Substance— excrebion %ir;# Sktn
bony substance tooth ’r&‘leersv)'; tissue
orgfanic___ hair S(:ale farﬂy t.Lssue ’
o e — - ot
Wot;d
bark _E,efgfn
plant substance — plant thSh. —fruit
sfuff — plant sap/juice soft roal/bulb
rock '
eartth
’ sta
raw material WAt .
salt ﬁ";
. . as rogen
inorgaric_J Tava ¥

PCT['Ol.eum Concrcf?_
, brick
rock-like material :

manufactyred __|mefal

materiat glass paint
plastic fueL
chemical
\eather CfS":Ielt;C agent
f&-:(hl& mdusfrlaL chcm;m[
intangible  [Vapour ‘ i:; hy.dmg:n watr
stuft cloudofpartices liquid )

i g slime | urine.
tangible,_| fluid fplasic wmps | mush/jelly/pulp ?o%frégw
Sh?ﬁ- powder _L ins aste.

dough cloth

aggregale coarse £lvers )
9978 rcgah Fuff Limp solid Leather

X rubber
strings/filaments pliable solid _____'fl:csh
rock |

eohesive solid bone.

o

Figure 9-2¢  Alternative Partitioning Hierarchies for Substances.

The first is based on ’naively scientific’ criteria, and the
second on ’'normal states’ of substances. A third hierarchy
based on ’uses or roles’ of substances could be added.

Thus, given two concepts, their relationship can be checked by
scanning their lists of hierarchy indicators for a common
hierarchy identifier, and if one is found, checking whether
either of the corresponding number brackets includes the other.
If yes, then one concept is superordinate to the other and if
no, they are incompatible. If no common hierarchy is found,
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the result of the check is "unknown relationship”. This is a
constant-time operation if lists of hierarchy indicators contain
just a few elements in most cases. as we have assumed.

This algorithm is very fast, and unlike some of the more
ad hoc graphical methods makes provably sound decisions.
However, like those methods it is inco;nplete. Consider for
example the "body fluid" node and the "liquid" node in the
first and second hierarchies of Figure 9-2 respectively. If we
imagine both hierarchies to be completed so that they terminate
within a common set of leaf nodes (the lowest-level Substance
types), then the set of leaves reachable from "body fluid" will
presumably be a subset of the set of leaves reachable from
"liquid". Thus a ‘smart’ algorithm could pronounce "body fluid"
subordinate to ‘“liquid", whereas ours returns "unknown
relationship”.

In the next section we sketch such ‘smart’ algorithms for
parts graphs (which are much like Lype graphs), but for type
compatibility checking our present method may be adequate.
The reason lies in the fact that the general inference algorithm
is not dependent on the §-graph algorithm alone for its type
information. For examrple, the fact that concept A is a special
case of concept B will presumably be available as an assertion
indexed under the "generalization" topic for A, even though no
§-assertion links the two concepts.  Such assertions allow the
general inference algorithm to make up for the gaps in the
graph algorithm. The point is that the special graphical methods
are intended only to accelerate the general inference algorithm
at the core of the system, not to supplant it. In this respect
our design philosophy differs {rom that in systems like KL-
TWO, in which a logically weak (but computationally efficient)
core is augmented with specialized extensions, such as a
terminological component, to meet the needs of intended
applications (Vilain, 1985).

9.3. Recognizing part-of relationships
\
Suppose that the on-board computer of a manned
spacecraft has detected a valve failure. Question: is the valve
part of the life support system? In a reasoning system entirely
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9 Accelerating Deductive Inference 199

dependent on general rules of inference, this might be difficult
to answer. For a positive answer, an inference chain which
progresses from part to superordinate part may have 10 be
constructed, and if the inference mechanism treats part-of
assertions like all others, this may involve a good deal of
combinatorial searching. Indeed, not only sets of superordinate
assertions forming such chains need to be explored in general;
for, as we shall see shortly, a part-of relation may be implicit
in a collection of assertions about parts structure even though
no such chain exists.

The part-of structure of an object can be represented in
essentially the same way as a taxonomy of concept types. We
introduce an object partitioning relation P, with

[x P > S xk]

expressing that object x is (exhaustively) partitioned into parts
Xy - Xp. If we simply want to assert that x has a part y,

we can do so by writing
[x Py z]

where z is possibly the empty part.

Figure 9-3 shows a partial human anatomy, naively
conceived, in the form of a P-graph. It subdivides the body
into head, neck, trunk and limbs (enumerated separately) and
also specifies a skeleton as part of the body. subdivided into
skull, spine, ribcage, pelvis and the bones of the four limbs.
Also, note that each division of the skeleton is linked to its
appropriate body segmem.23

The algorithms sketched for type graphs could be used
here to determine the truth values of such formulds as

[cranium—of-John part—of head-of-John] or
[trachea—of—John part—of bowel—of-John],

assuming that a sufficiently complete P-graph had previously
been established for John. (The assumption would be more

23The figure glosses over some logical niceties concerning the interpretation of
eneric nodes such as "pelvis” and "left-leg".
generic p i
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The Upper Levels of a Partitioning Graph
for the Human Body.

r
Each P-token represents a partitioning assertion dividing the

node to which it 1s linked above into the nodes to which it
is linked below. The solid lines define a partitioning
hierarchy. and the broken lines define three additional.
superimposed hierarchies.

Figure 9-3:

plausible for an object whose structure is unique, such as a
country. For wuniformly structured objects like people the
algorithms could serve to evaluate more general formulas, such

as
\

[(s x) part—of x]

where s is a function which, for any person x, picks out x's

ey
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9 Accelerating Deductive Inference 201

skull, that is,

Vx[[x person} => [(s x) skull-of x]].)
’ )
Similarly the algorithms could be wused to detect the

incompatibility of pairs of formulas such as

[x petvis—of John] and
{x left—leg—of John].

Additional types of generalized resolving facilitated by
partitioning graphs are mentioned in section 9.6.

This would short-circuit many proofs, but would also fail
to short-circuit many others. Consider, for example, the
question "Is the spine ‘part of y?", where y is the combination
of trunk and neck, as specified in the graph. This question is
similar to the question about the malfunctioning spacecraft
valve, and poses just the sort of problem we alluded to. The
response would be "unknown", since "spine" and y do not lie in
a common hierarchy; yet the graph certainly allows the
inference that the spine is part of y, since there is a P-
assertion which divides the spine exhaustively into neckbone
(cervical vertebrae) and backbone, and these have upward paths
to y. Similarly, the question may be asked whether the spine
is part of the limbs, and again the response would be
"unknown" since "spine" and ‘“limbs" lie in no common
hierarchy; yet a negative answer can be deduced from the
graph, as the reader can verify.

A realistic human anatomy would, of course, be far more
complicated, particularly if it delineated not only structurally
or geometrically well-defined parts, but also the functionally
cohesive  subsystems, such as the  digestive sys'tem.
cardiovascular system, nervous system, and so on. The
interplay of structural and functional views would lead to
further 'tangling’ of subhierarchies of the sort already evident
in Figure 9-3.

The complexity of parts graphs in comparison with type
graphs has led us to seek more powerful methods for them. In
view of the "P=NP?" obstacle to the discovery of efficient
methods for unrestricted graphs, we have sought to define
classes of graphs allowing greater structural freedom than strict
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202 The Knowledge Frontier:

hierarchies, yet amenable to fast, complete inference. One such
class is the class of closed graphs. Roughly, a closed graph
consists of at least one main hierarchy, along with any number
of additional hierarchies such that all downward paths from
nodes of these hierarchies terminate at leaves of the main
hierarchy. Nodes are subdivided into those which are known to
denote nonempty parts and those which are potentially empty
‘remainder’ parts. (It is the possibility of empty parts which
makes the generalization from hierarchies to closed graphs
nontrivial.)

The graph of Figure 9-3 very nearly satisfies the
requirements for closed graphs. The solid lines define the main
hierarchy, while the broken lines define additional superimposed
hierarchies. Note that all downward paths terminate at leaves
of the main hierarchy, save one: the (null) path from x ends
at a leaf node, namely x, not belonging to the main hierarchy.
Since x intuitively represents the soft tissue of the body (that
is, body minus skeleton) and x1 represents the soft tissue of
the head. x2 the soft tissue of the neck, and so on, the graph

could easily be closed by adding the P-assertion
r

[x P x1 x2...x7].

Closed P-graphs appear to provide much of the flexibility
required for representing part-of structures, yet permit
reasonably  efficient, complete inference of part-of and
disjointness relationships. For nodes which do not lie in the
main hierarchy, the inference algorithms work by ‘projecting’
these nodes into the main hierarchy (or some other common
hierarchy). For example. in Figure 9-3 the projection of "spine"
into the main hierarchy is the set of nodes S = {neckbone,
backbone}, for y it is Y = {neck, trunk}, and for "limbs" it is
L = {left arm, right arm, left leg, right leg}. The algorithm for
checking "part-of’ would conclude that "spine’ is part of y
since all members of S have ancestors in Y. The algorithm for
checking disjointness would conclude that "spine" is disjoint
from "limbs", since the members of S have no ancestors in L.
and vice versa (for details see (Schubert, 1979)).

While these methods require linear time in the worst
case, il is clear that nearly constant expected time is assured if
the graph can be decomposed into hierarchies such that no node
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belongs 1o more than a few hierarchies and the nodes being
compared usually belong to a common hierarchy. Under these
conditions separate preorder numbering of the component
hierarchies can be used much as in the case of ‘type hierarchies;
the main refinement is that projection into the main hierarchy
(or into some other common hierarchy) is tried as a last-ditch
strategy before an "unknown" response is given.

The restrictions on P-graphs can be relaxed still further
without running into the "P=NP?" problem. In particular, we
can define a semi-closed P-graph as one which is either a
closed P-graph, or a semi-closed P-graph with another semi-
closed P-graph attached to it by one of its main roots.
Intuitively, such graphs allow for ‘entirely unrelated’
partitionings of the same entity. Complete and reasonably
efficient inference algorithms for such graphs are given in
(Papalaskaris and Schubert, 1981), and proved correct in
(Papalaskaris, 1982).

9.4, Recognizing colour relationships

Imagine a witness to a bank robbery being questioned
about the colour of the get-away car. His impression was that
the car was tan, and he is asked "Was the car brown?".
Clearly the answer should be affirmative (for example, "Yes,
tan"), and this answer could easily be deduced from

18. [c tan],
11. Vx[[x tan] => [x brown]].

If the question had instead been "Was the car maroon?", a
negative answer could have been inferred from 10, 11,

12. Vx[[x maroon] => [x red]], and
13. Vx[[x red] => ~[x brown]]

in four proof steps.

These examples follow the pattern of the type and part-
of inferences exactly, and suggest that some sort of colour
hierarchy or graph should be used to eliminate searching. In
fact, the 11 basic colour terms of English could be introduced
via the type partitioning
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14. [coloured § red orange yellow green biue purple

pink white black grey brown].24
and 11 could be reformulated as something like
15. [brown § tan rust midbrown chocolate )

and similarly for 12, allowing either of the above questions to
be answered by simple hierarchy methods.

However, a series of complications has led us away from
graphical ~ methods towards geometric  methods.  First,
partitionings like 15 are inaccurate since shades like tan,
midbrown, and chocolate probably overlap. More accurate
characterizations require partitioning these shades into overlap
and non-overlap parts. Shades like turquoise and lime, which
straddle boundaries between basic colours would also have to
be subdivided, adding to the proliferation of partitionings.
Second, when we attempted to deal with ‘hedged’ colour
relations, such as the statement that lime is sort of yellow and
also sort of green, we realized that the colour partitioning
graph would at least havfe o be augmented with adjacency
and/or apart-from relations (see below). But even these
additions would leave us totally unequipped to deal with other
kinds of colour properties and relationships, such as lightness,
purity, saturation, complementarity, and the warm/cool
distinction. Geometric representations, on the other hand,
offered a handle on all of these problems. If colours could be
represented as simple regions in some colour space, all their
properties and relationships could be ‘read off’ their parametric
representations.

With this objective in mind. we undertook a search for a
structurally simple and theoretically complete colour space. We
were at first drawn to representations of colours in terms of

24\Ve regard it as a reasonable claim that every (uniform) colour is at least
a marginal instance of one of these basic colours. The claim that no colour
instantiates more than one of the basic colours can be defended as well.
Suffice i1 to say that a question answering sysiem could well hold 14 (and in
particular the disjointness of colours 14 entails) 1o be true, yet avoid applying
the basic colour terms 1o their marginal cases, for pragmatic reasons.
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three ‘orthogonal’ primaries, partly because the human visual
system employs three kinds of receptors selectively sensitive to
different wavelengths (though their frequency response is rather
proadband -- see (Kay. 1981)), and partly) because a colour
cube can be contrived so that it has some very pleasing
regularities. (Our version had the six basic colours of the
rainbow, along with black and white, at its eight corners.)
However, colour cubes are deficient in two respects.  First,
they are theoretically incapable of representing all perceptually
distinct shades of colour (see (Judd and Wyszecki, 1963): this
may seem surprising, in view of the wide commercial use of
three-colour schemes). In addition, the regions corresponding to
the English colour terms are rather complex, obliquely bounded
polyhedrons, making region comparison  computationally
awkward.

Our ultimate choice was a cylindrical representation,
arrived at by imagining any colour to be composed of some
amount of a pure, monochromatic colour, plus certain amounts
of black and white. Thus one dimension runs through the
continuum of rainbow hues, arranged in a circle and arbitrarily
scaled from O 1t 12; the second (radial) dimension
parameterizes the amount of black present as

purity = pure colour/(pure colour + black),

which decreases from 1 to 0O as black is added: and the third
(axial) dimension parametrizes the amount of white present as

dilution = white/(pure colour + black + white),

which increases from O to 1 as white is added (see Figure
9-4).

This model is similar to certain models well-known 1o
colour theorists, (Birren, 1969a), (Birren, 1969b), and like them
covers the full range of perceptible shades.® It appears 10 be
unique, however, in that it renders each English colour term
simply as a region bounded by six coordinate surfaces (defined
by three pairs of upper and lower bounds on hue, purity and

Z3The ‘saturation’ and "lightness’ parameters used in these models do mnot

coincide with purity and dilution.
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Figure 9-4: The eleven basic colours in a colour space.

The eleven basic colour in a (hue, purity, dilution) colour
space (with the cool shades ’lifted away’). Purity decreases as
black is added 1o a pure colour, and dilution increases as
white is added to it.

‘ pec x4

Purity = pure colour/(pure colour + black),
Ditution = white/(pure colour + black + white).

The numerical values have been chosen on purely intuitive
grounds.  They could be quite drasticallv altered without
affecting the resulls ol the algorithms based on the model. as
long as the region adjacencv relationships are not changed.

dilution). In the other models we are aware of, the boundaries

are more irregular.26

21{’Some adjustments to the simple regions of Figure 9-4 may be required.

Perhaps part of the "brown" region separating "red" from "black" should be
maroon or purple. We have atlempted to investigate this point empirically
using the colour graphics of a Jupiter terminal, but the range of available
colours, impressive as it seemed at first, was insufficiently subtle 1o resolve the
1ssue.,
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With this colour geometry it is possible to check any
desired relationship between pairs of colour regions, such as
inclusion, overlap, adjacency, and separation (apart-from) in a
small, fixed number of comparisons. Moreoveér, it is easy to
define non-basic terms such as turquoise, maroon, beige, scarlet,
and so on. as regions bounded (like basic colour regions) by
coordinate surfaces. Colour properties such as lightness, purity.
etc., and relations such as complementarity are computable in
fairly obvious ways.

Up to this point, we have tacitly assumed that the colour
cvlinder would contain explicit representations of all colours
for which a compatibility check would ever be required. We
can relax this assumption, allowing for the possibility that
certain non-basic colours are understood only in terms of their
qualitative relation to the basic colours. For example, turquoise
might be said to be greenish-blue, or what amounts to roughly
the same thing, both sort of blue and sort of green.

This calls for extension of our special methods, as is
evident from the following variant of the ‘robbery’ example.
Suppose the witness recalls the colour of the car as lime, and
the questioner asks whether its colour was turquoise.  The
incompatibility of these descriptions is clear (though of course
the accounts of different eye-witnesses can easily differ to this
extent). l.et us first see how the incompatibility could be
detected by unaided deductive inference, the only knowledge
about "lime" being that it is sort of yellow and sort of green
and about "turquoise” that it is sort of green and sort of blue.
The key to the proof of incompatibility is that nothing can be
both sort of vellow and sort of blue, because yellow and blue
are ‘aparl-from’ each other (being separated by green):

16. [c lime] known
17. Ux[[x Iime] => [x (sort—of yellow)]] known
18. [c (sort—of yellow)] from 16,17
19. [¢ turquoise] hypothesis
20. VUx[[x turquoise] => [x (sort—of biue)]] known
21. [¢ (sort—of blue)] from 19,20
22. [yellow apart—from blue] known
23. VAB[Ix[[x (sort—of A)] & [x (sort-of B)]]

=> ~[A apart-from.B]] known
24. VUx[~[x (sort—of yellow)] v

~[x (sort—of blue]] from 22,23

25. ~[c (sort—of blue)] from 18,24
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26.

contradiction

from 21,25

The second-order features here are of no importance -
they could be suppressed by treating colours as individuals
related to objects via a relation "x has colour y". The ‘apart-
from’ relation is stronger than mere incompatibility , since it
entails the existence of an intervening colour which separates
the two colours. To see that mere incompatibility would be
insufficient, consider the problem of checking "lime" and "olive
green" (instead of "lime" and "turquoise”) for compatibility.
"Lime", we may say, entails "sort of yellow" and "sort of
green". while "olive green" entails "sort of green" and "sort of
brown". But since "yellow”, "green" and "brown" are mutually
adjacent colours, rather than being ‘apari-from’ each other, we
cannot infer incompatibility on the basis of these entailments.
(We may still be able to infer incompatibility in some other
way, for example, on the basis of relative lightness or purity.)

We would like to replace inordinately long proofs like
the above by methods which directly infer a contradiction from
assertions like 18 and 21. In (Papalaskaris and Schubert,
1982) and (Papalaskaris, 1982) we describe a tabular addendum
to the cylinder model which allows incompatibilities between
pairs of hedged or unhedged, negated or unnegated colour
predicates (like those in 18 & 21) 1o be detected without
proof. If the colour predicates are A and B (assumed to be
non-equivalent), the method consists of first classifying the
relation between A and B as one of ‘"apart", "adjacent",
"overlapping” (with neither colour region including the other),
"centre-included" (that is, inclusion without boundary contact),
or ‘edge-included”, using the colour cylinder. Then this
classification, along with the hedging and sign information and
the classification of A and B as basic or non-basic is used to
judge incompatibility by table look-up. For example, "A and B
are judged incompatible just in case A is basic and B is (edge-
or centre-) included in A; (thus “brown and tan are
incompatible); (sort-of A) and (sort-of B) are judged
incompatible just in case A and B are apart; (thus sort-of
yellow and sort-of blue are incompatible): A and (sort-of B)
are judged incompatible just in case A is basic and B is centre-
included in A; (thus “red and sort-of scarlet are incompatible):

oot

E N LR

.&‘

v 1 o L
BRI e

i
%3

5




iy ¢
5
et

P
i o

.

“
*u

e

e s
-
-

=

i«

p
.

o s A

iy A
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and “(sort-of A) and (sort-of B) are judged incompatible just
in case A is basic and A and B overlap or B is included in A;
(thus ~(sort-of yellow) and lime are mcompa\uble)

These judgements can be understood by interpreting "sort-
of" as an operator which expands a colour region Wwith
coordinate bounds (x.y,). i € {12,3}), into one with coordinate
bounds (x-d.y+d), where d = (y;x,/4 (that is, each interval
is expanded to one and one-half times its original size).
Coordinate intervals for non-basic colours are assumed to be at
most half as large as for basic colours. For a one-dimensional
visualization of this account see (Papalaskaris, 1982). 27

9.5. Recognizing time relationships

Did the first moonwalk by an astronaut precede the first
space shuttle launch? Most people will be able to answer this
question quickly and easily in the affirmative. The answer will
perhaps be based on the feeling that the first moonwalk
occurred many years ago, while the shuttle program only
became operational in recent years. More details than that may
be recalled. of course: that the Apollo 11 mission took place
in 1969, and the first shuttle launch in 1981, for example, and
perhaps even more specific dates. Clearly question answering
systems knowledgeable about events will likewise have to be
able to store and recall approximate or exact event times.

The ability to retain absolute time information is not
enough, however, since people easily recall the time order of
connected sequences of events even in the absence of such
information. The point can be made by way of any familiar
fairy-tale. Did Little Red Riding Hood meet anyone before
arriving at her grandmother’s cottage? The answer is "the wolf",
of course. Now consider how this answer might be arrived at.

2" (Papalaskaris, 1982) d is in effect assumed to be (yi-xi)/Z, so that

interval sizes are doubled by "sort-of”. This is probably excessive. For example,
the "sort of yellow" region probably should not reach all the way to the
centre of the "green” region; similarly, "sort of lime" and "sort of turquoise”
probably should be "apart-from" each other, rather than adjacent.
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One possibility is that the story is scanned’ from the beginning
forward until both LRRH's encounter with the wolf and her
arrival at the cotlage have been retrieved, in thalt order,
However, this does not seem very plausible psychologically, and
certainly would be a clumsy strategy computationally,
especially for long narratives. More likely, events which fit
the pattern "LRRH encounters character x" are recalled
associatively (and this is something that can be duplicated very
nicely with our concept-centred, topic-oriented retrieval
mechanism).  Presumably, this will include not only the first
encounter with the wolf., but also the fateful second encounter,
as well as the ultimate encounters with the gamekeeper and
with grandmother. Similarly, LRRH's arrival at the cottage
would be retrieved associatively. The remaining problem is then
to sort oul the pre-arrival encounters from the post-arrival
encounters.

Much as in the case of type, part-of, and colour
inference. special methods are needed here, so that the general
reasoning system will not lapse into combinatory search in
determining time order. Moreover, as before we would prefer
constant-lime checks 1o linear searches of story lines. (In this
respect, we would like to improve on heuristic methods such as
those of (Kahn and Gorry, 1977)).

Partitioning graphs which partition time intervals, and in
which the left-to-right order of subintervals is interpreted as
their time order, are a possibility. We found that this
representation makes a mountain out of a molehill, however.
We have remarked before that the problem of extracling part-
of relationships from an arbitrary § or P-graph is intractable
unless P=NP. But the corresponding problem for time intervals
of determining whether one interval lies within another (given
positive, non-disjunctive time ordering information only) is
linearly solvable. All we have to do is to represent all time
intervals in terms of their beginning and end points, and insert
a directed arc for each pair of time points whose order is
known explicitly. The resultant graph is an acyclic digraph
(except for re-enirant time travel stories), and any ordering
relation implicit in it can be extracted by tracing from one
point to the other, a linear operation relative to the number of
edges of the graph.
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9 Accelerating Deductive Inference 211

Unfortunately, no methods are known for extracting
ordering relationships from arbitrary acyclic digraphs in
sublinear time without incurring non—li\near storage cosl.
(However, see (Kameda, 1975) for a constant-time method for
certain restricted kinds of planar acyclic digraphs.) Rather than
investing effort in this research problem, which would have
limited pay-off in any case given that we would also like to
introduce absolute times and durations (or bounds thereon), we
have proceeded pragmatically.

Roughly, the idea behind our scheme is to try to assign
numeric values (pseudo-times, so to speak) to time points in
their time order, when this order is known. To the extent that
this is possible, the time order of two time points can be
checked in constant time by comparing their pseudo-times.

Figure 9-5 (a) illustrates the kind of time graph
determined by a narrative. Nodes denote lime instants, and are
numbered in the order of addition to the graph. Also the
pseudo-times (which are incremented in steps of 1000 when not
bounded above) are shown alongside the nodes. Typically
narrative events correspond to pairs of time nodes, such as 1 &
2, 3 & 4, etc. Figure 9-5 (b) shows one possible sequence of
event relationships which would give rise to the time graph of
Figure 9-5 (a). The graph consists of a collection of lime
chains, each with its own pseudotime sequence. A lime chain is
a linear graph plus, possibly, transitive edges. Note that the
link from node 3 to node 4 becomes a transitive edge of the
initial time chain when nodes 9-13 are inserted. In the figure
different node shapes are used for the different time chains;
actually, this distinction is made by associaling a metanode
with each chain and maintaining a metagraph showing the
interconnections between chains (shown as broken links). The
metagraph for Figure 9-5 (a) is shown in Figure 9-5 (c).

As an example of the use of such a graph, suppose that
the time order of nodes 7 and 16 is to be checked. Upon
determination that 7 and 16 belong to different chains, the
metagraph would be searched by a depth-first recursive
algorithm to determine a valid path from 7 to 16 or 16 to 7.
This would yield the cross-chain path which runs from the
'square’ metanode to the ‘round’ metanode via link (8,3) and
from there to the 'hexagonal metanode via link (4,15). Since
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e(1,2) 0 1000
e{3,4) after e(1,2) 7] B »
e(5,6) after e(3,4) \ 1
e(7,8) before e{3,4) ]
e(9,10) during e(3,4)
e(11,12) after e(9,10)

and during e(3,4) ;!
e(13,14) during e{3,4) a
e(15,16) after e(3,4)
e(17,18) before e{15, 16) 3
e(19,20) after e(5,6)

Figure 9-5: Time graph for a narrative.

(a) Time graph for a narrative. The numbers within the nodes
record the narrative sequence, that is, the order in which the
nodes were added. The numbers beside the nodes are pseudo-
times, used for checking time order within a time chain. The
four distinct node shapes distinguish the four time chains in
the graph. The link from node 3 to node 4 becomes a
transitive edge of the original time chain when nodes 9-12 are
inserted. The pseudo-times at nodes 9-12 progress in intervals
equal to one tenth of the remaining pseudo-time interval
(that is, 1/10 the pseudo-tlime atl node 4 less the last-assigned
pseudo-time).

(b) Possible sequence of event relationships giving rise 1o the
graph in (a). Note that event e(11,12) is inserted so thal it 3
occurs both after €(9,10) and during e(3,4). This is actually
the most common case in story understanding, since events
are usually reported one after another, but within a pre-
established time frame.

(c) Metagraph for the graph in (a). The large metanodes
correspond to entire time chains and are connected by the
‘cross~chain’ links that occur in the time graph.

\

the pseudotime of node 7 is less than that of node 8, and the
pseudotime of node 15 is less than that of node 16, the answer |
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"7 before 16" can be returned.

Obviously time-checks restricted to one chain require only
one comparison, while the worst-case computation time for time
checks across chains is proportional to the number of chain-to-
chain connections. This number is typically much smaller than v vk !

the total number of links in the time graph, as far as we can ’ ‘:E:T 3
£ tell from sample time graphs for newspaper stories several ) by . y
paragraphs long, a fairy-tale (Little Red Riding Hood), excerpts Ly

. of European history. Moreover, it appears that the temporal v
inference problems that arise in story understanding and ¢
! question answering typically involve only nodes belonging to g
4 the same chain; this is because the causal connections of i
‘ interest (which correlate with time order) are usually quite
direct.

We have extended the time representation and algorithms ““
3 to allow for upper and lower bounds on absolute node times h
and on arc durations. whenever these are available (Taugher,
1983): cf. (Allen and Kautz, 1985). Bounds on absolute node L il
times are specified as 6-tuples of the form (year month day "y
hour minute second). For example,

| (1984 10 d 12 0 0) < t < (1984 10 d 13 0 0) ik

Y
i

establishes some day d in October 1984, 12:00 noon, as a lower o A
4 bound on z, and 1:00 pm of the same day as an upper bound. y
; Note that unspecified constants are permissible in time bounds. ;&“;.‘-
Bounds are comparable if they are identical or have identical
initial segments followed by distinct numbers. Upper and
lower bounds on arc durations are uniformly specified in
seconds (possibly fractional).

Optimal bounds on node times and arc durations are
maintained by constraint propagation: in essence, upper bounds
1 are propagated backward and lower bounds forward. The
constraints used are inequalities relating the bounds associated
with pairs of nodes connected by an arc. For example, if
(1;u;). (1,,u,) are the lower and upper bounds on nodes 1 and
2 respectively, and (l,u) the lower and upper bounds on the
duration of the arc from 1 to 2, then the inequalities
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must be satisfied (among others).

The time graphs and associated algorithms provide a basis
for fast computation of a wide variety of temporal properties
and relationships of events, including time order. overlap,
inclusion (during). duration, exact or approximate time of
occurrence, and exact or approximate elapsed time between
events; all of these are easily expressed in terms of the order
of time points marking beginnings and ends of events, actual
time bounds on these time points. and bounds on actual time
intervals separating them.

We have tested the time-order algorithm (implemented in
Pascal) on a set of time relations hand-extracted from “"Little
Red Riding Hood". The time graph iconsisted of 290 time points,
with 21 metanodes and 33 cross-chain links. Question
answering for the ordering of random pairs of time points
required 30 milliseconds of CPU time on the average on a
VAX 11/780. Randomly generated graphs gave very similar
results, and showed the expected linear dependence on the size
of the metagraph. (Details are provided in (Taugher and
Schubert, 1986)).

It is interesting 1o compare our approach with that of
Allen (Allen, 1983).  Allen's interval-based representation is
somewhat more flexible -- not because it is interval-based, but
rather because it admits certain kinds of disjunctions, such as

e before or after e,

not expressible as conjunctions of time point  relations.
However, as Vilain & Kautz (Vilain and Kautz, 1986) show.
the price paid Tor this extra flexibility 1s NP-hardness of
temporal inference. Vilain & Kautz also note that when only a
conjunction of relations using <, <, = =, >. and > over
a set of n time points is allowed, determining the consistency
of the conjunction is an O(n3) time, O(n2) space operation.

We find that these bounds can be reduced to O(n2) and
O(n) respectively when n is taken to be the number of
relationships in the given conjunction, rather than the number
of time points. Moreover, our own algorithms allow us to
check the consistency of a conjunction of n relations based on
§ in O(mn) time and O(n) space. by building up a time
graph progressively, with a resultant metagraph of size m. For
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each relation, we check whether the current graph returns
"yes', "no’, or "unknown"; in the first case, the relation is
redundant, in the second it is inconsistent with those already
present, and in the third it can be consistently added to the
graph. As m may be quite small compared to n, our method

can be significantly faster.?8

9.6. Combining general and special methods

In motivating the special methods proposed above, we
mentioned literal evaluation and generalized resolution as two
ways in which special methods can be used to accelerate a
general deduction algorithm. We will now spell out this
interaction in a little more detail for a resolution-based system
(like ours). and comment on generalized factoring, subsumption,
and tautology elimination in such a setting.

As we have remarked, literal evaluation and generalized
resolution are special cases of what Stickel (Stickel, 1983),
(Stickel, 1985) calls "theory resolution”. The idea in theory
resolution is the following. Suppose that clauses ¢;, ¢,. ... €

n
which
are (collectively) inconsistent with some separately assumed
theory (for example, a taxonomic theory consisting of assertions
about the relationships between types). Then we can infer
(c;-¢;) v (cyey) vov (c,-c,). Actually, this describes total

respectively contain non-null subclauses c,’. Cylh s €

theory resolution; a more general version still, called . partial
theory resolution, allows unit clauses to be added to the
clauses ¢,". ... ¢ ' to achieve inconsistency. the disjunction of
whose negations must then be added to the resolvent as a
residue. When the ¢, are unit clauses, theory resolution is said
10 be narrow.

Evaluation of a literal with result "false" can thus bg
viewed as narrow theory resolution with n=1., and generalized

28'I’he fact that Vilain & Kautz permit additional relations (of which all but
€ and # are redundant) turns out to make no difference to the asymptotic
upper bounds.
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resolving as narrow theory resolution with n=2. It is clear thai
from this very general perspective, there can in principle be
arbitrarily many special methods for any nontrivial domain,
geared towards recognition and rapid elimination of arbitrarily
complex sets of clauses c;". ... c . (For any nontrivial theory

there are, after all, arbitrarily complex sets of statements
inconsistent with it.) Thus we cannot expect to provide an
exhaustive enumeration of deductive shortcuts applicable in
taxonomic, colour, or temporal reasoning, even if we confine
ourselves to narrow theory resolution with n £ 2. What we
can do is to list more systematically the kinds of generalized
resolving that ‘fall out’ naturally from the specialized
representations we have proposed.

In connection with concept taxonomies, we illustrated two
variant forms of generalized resolution. One depended on the
incompatibility of two atoms (that is, predicates plus

- arguments) and the other on subordination of one atom by

another (and hence incompatibility of the subordinate atom
with the negation of the superordinate one). Incompatibility
and subordination of atoms likewise are the key to generalized
resolution in the other special domains, as well as to
generalized factoring, subsumption testing, and tautology
elimination.

In the case of atoms involving 2-place predicates such as
"part-of”, "skull-of" or "before", there are several ways in which
incompatibility or subordination can arise. We can generally
classify these ways as ‘direct’ and ’indirect’, but the details
depend on the particular predicates involved.

First, atoms can be ‘directly’ incompatible, or in a
relation of subordination, as a result of their predicates being
incompatible or in a relation of subordination. Examples are

[x skull-of y], [x spine-of yl.
and
[x part-of y], [x skull-of y).

Such cases are analogous to examples involving 1-place
predicates, such as ‘“person” and ‘“orchid". or ‘“plant" and
“orchid". Generalized resolution in such cases requires that both
arguments of one atom be,unified with the arguments of the

S -
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other.

But in addition, incompatibility or subordination can arise
‘implicitly’ as a result of relationships between the arguments
occurring in atoms. For example,

[x part-of c], [x part-of ¢’}

are incompatible (despite the identity of their predicates) if x
is known to be nonempty and ¢ and ¢ are known to be
disjoint parts (that is, if they lie on different branches of a
parts hierarchy). Note that only the first arguments need to be
unified in this case. Generalized resolving yields the residue [x
empty]. which reduces to the null clause if x is known to be
nonempty. For the same pair of atoms, the first subordinates
the second if ¢’ is known to be part of ¢ (that is, if ¢ is a
descendant of ¢ in a parts hierarchy). In this case the negation
of the first atom ‘resolves’ against the second atom to yield
the null clause.

Another case of indirect incompatibility is illustrated by
the atoms

[x part-of c]. [¢’ part-of x],

where ¢ and ¢’ are known to be disjoint parts. In this case the
first argument of the first atom must be unified with the
second argument of the second atom, and 'resolving’ yields [c’
empty).

An additional case of subordination is illustrated .y the
atoms

[c part-of x], [¢’ part of x],

where ¢ is known to be part of c. In this case the second
arguments need (o be unified, and the negation of the first
atom ‘resolves’ against the second atom to yield the null
clause.

For 2-place time relations between moments of time, there
are somewhat fewer useful ways of generalizing resolution than
in the case of part relations. First, the only cases of ‘direct’
incompatibility and subordination are trivial ones. not requiring
a time graph, such as
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or
[t < v [t=1)

In the first example, generalized resolving yields residue [t =
t']. while in the second example, generalized resolving of the
negation of the first alom against the second atom vyields the
null clause.

Second, there appear to be only 3 useful kinds of
‘implicit’ incompatibility or subordination. These are illustrated
by the following pairs of atoms:

[t € ¢ [ € 1]
[c € 1] [0 € 1]
[t € ¢L [t € ¢]

A

where in all 3 cases [c K ¢'] is presumed known (that is,
obtainable from the time graph). In the first example, residue
t=c=c’ can be inferred; in the second and third examples, the
null clause is obtained from the negation of the first atom
together with the second atom.

This completes our inventory of potentially useful kinds
of generalized resolving facilitated by our special methods for
parts and times. (About evaluation, and about generalized
resolving for types and colours, we provided sufficient detail in
earlier sections.) We wish to mention, finally, ' that just as
resolving can be generalized based on recognizing incompatibility
or subordination among atoms, so can factoring, subsumption
testing, and tautology elimination. The following are examples
of clauses and corresponding generalized factors, patterned on
the above examples of generalized resolving:

[x onimal) v [x wolf] .....................
~[x person] v [x wolf] .................
=[x skull-of y] v [x spine-of y] ...

[x part-of y] v [x skutl—of y] .........
“[x port—of c¢] v [x part—of ¢*],
where ¢, ¢’ are disjoint ..

[c part-of x] v [¢' part—of x],
where ¢’ is pbrt of ¢ ...........

[x animal]

=[x person]

=[x skull-of y]
[x part—of y]
~[x part—of c¢] v [x empty]
[¢c’ part—of x]
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At S el v e Sl [t K] v [t=c] (i.e., [ t])
[cSt]v[c'st] .......... [e £t]

RN EALE X e [t <e']
\

Subsumed literals and tautologous disjunctive pairs of
literals follow similar patterns. For example,

[x wolf] subsumes [x animal]

and
-[x wolf] v [x animal]

is tautologous (in a generalized sense). We leave further details
to the reader, but should remark that elimination of a clause
one of whose literals evaluates to "true" is tantamount to
subsumed clause elimination. For example. eliminaling a clause
containing [c animal], where ¢ is known to be a wolf. amounts
to eliminating a clause subsumed by [c wolf].

In short, then, the special methods we have described
provide a basis for constant-time or near constant-time
simplification and generalized resolution, factoring, subsumption
testing and tautology elimination in the taxonomic, colour., and
temporal domains.

9.7. Concluding remarks

We have shown that much combinatory reasoning in a
question answering System can be short-circuited by the use of
special graphical and geometrical methods.

The domains we have considered —- types, parts, colours
and times -- do not quite exhaust those for which special
methods seem essential. In particular, part-of relationships are
only one aspect of the structure of physical (and other)
systems, and more powerful modelling methods are needed for
rapid inference of static and dynamic relationships. For
example, people intuitively sense the ‘faulty physics’ in

He put a bunch of roses in the wine glass,

perceiving with their ‘mind’s eye  that the roses won't stay put
(whereas violets might). A good deal has been written on
whether image-like representations are psychologically real and
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theoretically necessary. but that is not at issue here (see
Chapter 15, this volume, for more on this). What is at issue
is computational efficacy. and it seems clear that the methods
of symbolic logic, though no doubt capable in principle of
predicting the behaviour of physical systems, need to be
supplemented with special modelling methods in order to reach
conclusions within reasonable times. The various expert systems
incorporating models of toy blocks, electronic circuits, weight-
and-pulley assemblies and so forth will point the way,
although the often complex and deformable objects of the real
world (like plants, coats, and people) may require methods
different from those of the popular microworlds. If sufficiently
powerful ‘analog’ models can be developed for physical objects,
these may obviate the need for parts graphs such as our P-
graphs, just as the colour cylinder obviated the need for colour
§-graphs.

Beyond this. we do not foresee having to devise too
many more special representations, as long as we are concerned
with question answering of a general nature only, and not with
expert consultation (for example, on programming, mathematics,
or economic forecasting). In fact, even specialized expertise may
often require no more than re-deployment of spatio-temporal
modelling skills. For example, expertise in symbol manipulation
(as required for symbolic logic, mathematics, and programming)
may well rest in part on spatio-temporal visualization. and in
part on linguistic skills (parsing, pattern matching) which are
of course presupposed in a question answering system.




