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Abstract

Deriving structured semantic representations
from unrestricted text, in a format suitable for
sound, explainable reasoning, is an important
goal for achieving AGI. Consequently much
effort has been invested in this goal, but the
proposed representations fall short in various
ways. Unscoped Logical Form (ULF) is a
strictly typed, loss-free semantic representa-
tion close to surface form and conducive to
linguistic inference. ULF can be further re-
solved into the more precise Episodic Logic.
Previous transformer language models have
shown promise in the task of parsing English to
ULF, but suffered from a lack of a substantial
dataset for training. We present a new fine-
tuned language model parser for ULF, trained
on a greatly expanded dataset of ULFs auto-
matically derived from Brown corpus Treebank
parse trees. Additionally, the model uses Pa-
rameter Efficient Fine Tuning (PEFT) to lever-
age a substantially larger base model than its
predecessor while maintaining fast training
times. We find that training on automatically
derived ULFs substantially improves parser
performance from the existing smaller dataset
(from SEMBLEU score of 0.43 to 0.68), or even
the previously used larger, generatively aug-
mented ULF dataset, used with a transition
parser (from SEMBLEU score of 0.49 to 0.68).

1 Introduction

Large language models (LLMs) have revolution-
ized the interactive generation of fluent, coherent
text by machines, but their functioning is hidden
in their millions or billions of parameters. This
blurs the distinction between knowledgeable out-
put and confabulation. Moreover, because they rely
on probabilistic mimicry of their vast training data,
rather than on rational thought, they do not reason
or plan with the kind of reliability and scalability
that is required for consequential applications in ar-
eas like healthcare, legal matters, police operations,

or search and rescue. Ultimately, artificial general
intelligence (AGI) requires the ability to reason and
plan reliably at scale, and to explain how conclu-
sions or plans were arrived at. For reasoning to
be explicit and auditable, the knowledge and rules
employed must themselves be made explicit and
sufficiently unambiguous. You cannot tell whether

“Alice warned the woman that Bob had left” plausi-
bly entails “Bob had left" or instead, “Bob had left
the woman,” without clarifying the semantic struc-
ture of the premise.1 Thus effective representation
of linguistic content and background knowledge
forms the cornerstone of systems designed not only
to converse fluently, but also to reason and plan
reliably. Such representations should be derivable
from language, and enable semantic inference, dis-
course processing, and explicit, explainable reason-
ing. Kim and Schubert (2019) describe Unscoped
Logical Form (ULF), one such knowledge repre-
sentation (with a lengthy prior history, e.g., Hwang
and Schubert, 1994; Schubert and Hwang, 2000),
as an alternative to other popular representations,
because it preserves more of the semantic infor-
mation of natural language while maintaining a
strict type system supporting well-founded, natural
inference.

Due to their retention of all sentential informa-
tion and their coherent type structure, ULFs lend
themselves to natural logic-like inference (Kim
et al., 2021c,b), discourse inferences including
clause-taking verbs, counterfactuals, questions, re-
quests, and generalizations (Kim et al., 2019), as
well as schema-based story representation (Lawley
et al., 2019). ULFs, and their subsequent resolu-

1As a preview, the alternative VP logical forms are these
(hinging on reifier that vs. relativizer that.rel):

((PAST warn.v) (the.d woman.n)
(that (| Bob| ((PAST have.aux) (PERF leave.v)))))

((PAST warn.v) (the.d (n+preds woman.n (sub that.rel
(| Bob| ((PAST have.aux) ((PERF leave.v) *h)))))))



tion into Episodic Logic, have also proven to be a
useful representation for inference within interac-
tive natural language understanding systems (Kane
et al., 2020, 2023). Improving the scope and ac-
curacy of ULF parsers will enable generalization
of such systems. To provide an initial idea of the
form of ULFs and their application to inference,
here are three simple examples of the ULFs for the
sentences “Bob pretended to be asleep”, “Alice
often kids Bob”, and “I wish I had turned off the
stove”, along with some inferences derivable by
the cited methods:

((| Bob| ((PAST pretend.v) (to (be.v asleep.a)))))
⇒ (| Bob| ((PAST be.v) (not asleep.a)))

(| Alice| frequently.adv-f ((PRES kid.v) | Bob|))
⇒ ((a.d person.n) sometimes.adv-f ((PRES tease.v)

(a.d person.n)))

(I.pro ((PRES wish.v) (tht (I.pro ((cf have.aux-s)
((PERF turn_off.v) (the.d stove.n)))))))

⇒ (I.pro ((PAST do.aux-s) not.adv-s (turn_off.v
(the.d stove.n))))

(Some syntactic explanations follow later.) Their
similarity to surface form should enable the reader
to understand the inferences. Unlike inferences by
LLMs, such ULF-based inferences are explainable
in detail, in this case in terms of the implications of
“pretending to,” from the plausible assumption that
“Bob” and “Alice” are instances of persons, from
the entailment “frequently” ⇒ “sometimes,” from
the approximate synonymy of “kid” and “tease” (as
verbs), and (in the last example) from the proper-
ties of counterfactual entailment of the subjunctive
form. Resolving ULFs into Episodic Logic (EL)
involves systematic deindexing, scoping, and ref-
erence resolution processes, and this more precise
representation enables a superset of FOL inferences
as well as uncertain inferences, in conjunction with
miscellaneous world and lexical knowledge, and
with support from taxonomic, temporal, arithmetic,
and other specialist subsystems (e.g., Schubert,
2014). If necessary, ULF can be further converted
to Episodic Logic for more granular inference. Re-
solving ULFs into Episodic Logic (EL) involves
systematic deindexing, scoping, and reference res-
olution processes, and this more precise represen-
tation enables a superset of FOL inferences as well
as uncertain inferences, in conjunction with mis-
cellaneous world and lexical knowledge, and with
support from taxonomic, temporal, arithmetic, and
other specialist subsystems (e.g., Schubert, 2014).

The main contributions of this paper are (1)
the demonstration that a large corpus of syntac-
tically annotated sentences from a wide spectrum
of sources (the Brown corpus) can be rather re-
liably mapped to ULF – an English-like, highly
expressive, coherently typed initial logical form
previously shown to be suitable for inference; and
(2) the ULF-annotated sentences thus obtained to-
gether with a small hand-annotated “gold” train-
ing set can be used to fine-tune an LLM for se-
mantic parsing, obtaining a level of accuracy strik-
ingly better than obtained by previous ULF parsers,
and comparable to results obtained for other, less
comprehensive semantic representations that used
much larger hand-annotated training sets than our
“gold” corpus.

In the remaining sections, we comment on re-
lated representations and prior ULF parsers (Sec-
tion 2), our rule-based annotation of the Brown
corpus Penn Treebank (Marcus et al., 1993) POS
tags to obtain a greatly expanded ULF training
set (Section 3), our models for fine-tuning and the
success metrics (Section 4), and the results with
our methods, comparing these to relevant previous
semantic parsers (Section 5). We summarize and
reiterate our results in the Conclusion (Section 6).

2 Related Work

2.1 Other Knowledge Representations

We briefly discuss the pros and cons of other con-
temporary knowledge representations including
generic First Order Logic (FOL), Discourse Rep-
resentation Theory (DRT), Abstract Meaning Rep-
resentation (AMR), and Minimal Recursion Se-
mantics (MRS). Perhaps the most simply format-
ted representation, FOL is easy to generate infer-
ences from and expressive enough to represent the
meaning of most simple, matter-of-fact sentences.
Through the use of various syntactic and semantic
maneuvers, FOL can also be adapted to sentences
that involve more subtle subject matter. However,
the required circumlocutions are apt to be awk-
ward and remote from surface form. For example,
they may require explicit quantification over pos-
sible worlds, or functionalizing of all predicates
and quantifiers, and application of a “Holds” or “Is
True” predicate to functionalized sentences (Schu-
bert, 2015).

To address some pronoun resolution issues in
the conversion of natural language to FOL, Kamp
(1981) and Heim (1982) developed Discourse Rep-



resentation Theory. The nested structures in this
theory contain free variables to be dynamically in-
terpreted; but because Discourse Representation
Theory is convertible to FOL, it shares the expres-
sive limitations of the latter. (An extension of DRT
allowing for mental states and attitudes, MS-DRT,
seems not to have been deployed as yet in semantic
parsing.)

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is less focused on echoing the
syntax of sentences, instead striving to represent
sentences of similar meaning but different wording
as the same AMR graph structure. This is useful in
detecting meaning similarity or equivalence, and
reduces the need for inferences, such as a “collide”
event occurred, given that “Bob was injured in a col-
lision”. However, AMR drops important aspects of
meaning (such as tense, and the distinction between
hypothetical events and real ones), and makes in-
sufficient commitments about the semantic types
of its constituents (such as modifiers and quanti-
fiers) to be suitable for reliable inference (again
see Schubert, 2015, where other representations
are considered as well). The more recent multi-
lingual Uniform Meaning Representation (UMR)
(Van Gysel et al., 2021) extends AMR to include
temporal and modal dependencies, but due to lim-
ited training corpora, the only available parsers use
a pipeline approach by first parsing the AMR and
then automatically converting to UMR (Chun and
Xue, 20240815–20240815).

In view of the considerable attention that AMR
has received in the research literature of the last
decade, some quick comparisons of AMR and ULF
structures can provide an intuitive idea of their char-
acteristics and differences, particularly for readers
unfamiliar with ULF. Consider the sentences

1. The broadcast asserted that chemicals
were dumped into the river.
2. The broadcast showed chemicals be-
ing dumped into the river.

The AMR representations of these sentences are
identical except for the respective event predicates
{assert-02, show-01}:

(z0 / {assert-02, show-01}
:ARG0 (z1 / broadcast
:ARG1 (z2 / dump-01

:ARG1 (z3 / chemical)
:destination (z4 / river)))

Note the free variables, generally assumed to be
existentially bound at the top level. For version

(1), this roughly says that a broadcast z1 asserts
an event z2 of dumping a chemical z3 into a river
z4. Besides the neglect of tense, one issue is that a
dumping event is implicitly assumed to exist, not al-
lowing for a false assertion (“assert” should create
an opaque context). Another is that “assert” should
take a proposition, not an event, as object argument.
(You can assert the Second Amendment, but not
the Second World War.) The AMR representation
works better for version (2), insofar as it’s entirely
possible that a broadcast might show a chemical
dumping event.

The following are the quite distinct ULF inter-
pretations automatically obtained for (1) and (2)
(where the tags ∼1, ∼2, ... indicate positions of
corresponding input words, needed for reference
resolution and other pragmatic phenomena; they
are omitted for ULF evaluations):

(((the.d~1 broadcast.n~2)
((PAST assert.v~3)
(that~4
((k (plur chemical.n~5))
((PAST be.aux~6)
((pasv dump.v~7)

(adv-a (into.p~8 (the.d~9 river.n~10)))))))))
\.)

(((the.d~1 broadcast.n~2)
((PAST show.v~3)
((k (plur chemical.n~4))
((PROG be.aux~5)
((pasv dump.v~6)
(adv-a (into.p~7 (the.d~8 river.n~9))))))))

\.)

Some points to note in these examples (as well as
the earlier introductory ones) are type/sortal distinc-
tions indicated by dot-suffixes like .d (determiner),
.n (nominal predicate), .v (verbal predicate), etc.;
and the retention of tense, definite determiners, and
plurals. ‘plur’ shifts a predicate true or false of
single entities to a predicate true or false of sets
of entities. The operator ‘k’ type-shifts a monadic
predicate P to the abstract kind (k P) whose real-
izations satisfy P.2 Most notably, the type-shifting
operator ‘that’ in the first ULF maps a sentence
meaning to a propositional individual (see Kim
and Schubert, 2019). While the proposition exists,
it need not be true and the entities it introduces
need not exist – this is a matter of inference, for
instance for a trustworthy report. In the second
ULF, the verbal predicate ‘show.v’ is treated as tak-
ing an object (theme) – namely chemicals, and a
predicate – namely, the property of being dumped

2But acting on a kind entails acting on an instance of the
kind – here, an instance of the kind, chemicals.



into the river, as arguments. (Predicate arguments
cannot be quantified over, and the logic remains
first-order.)

Minimal Recursion Semantics (MRS)
(Flickinger et al., 2012) shares some fea-
tures with DRT and AMR, though it deals fully
with restricted quantification, attitudes, and other
phenomena. In its “native form” it uses ordinary
predicate + arguments syntax, but assigns names
(handles) to predications, using these as place-
holders for embedded predications. However, the
semantic representations seem under-determined
in terms of type structure, and are somewhat hard
to understand, because of the indirectness of the
structural descriptions – use of handles to flatten
the representation, span indices to indicate the
scope of handles, and arguments of predicates that
include, besides handles (sometimes undefined),
various types of unbound variables that are
presumably to be closed existentially with some
appropriate scope. It is unclear if MRS is intended
for reasoning, but we are not aware of recent work
in that direction.

2.2 Previous ULF Parsers
Kim et al. (2021a) introduced an LSTM-based tran-
sition parser trained on a small, hand-annotated
“gold” corpus of English-ULF pairs, achieving ac-
curacy on par with early AMR parsers trained on
much larger datasets. Gibson and Lawley (2022)
later used a fine-tuned autoregressive language
model on the same corpus and reported similar
performance, showing that such models can per-
form well even with limited training data. Their
model used the idea from (Mager et al., 2020) and
(Bevilacqua et al., 2021) that the parsing task could
be performed by seq2seq models similar to previ-
ous AMR-to-text models. Building on these, Ju-
vekar et al. (2023) generated a much larger syn-
thetic dataset using the gold data as seed sen-
tences. Their method, grounded in ULF type
constraints and linguistic patterns, created up to
116,112 English-ULF pairs, slightly improving
upon (Kim et al., 2021a) (see Section 5).

Here, we present a new parser based on a large
language model (LLM) trained on ULFs automati-
cally derived from the Brown Treebank, containing
about 50,000 sentences (20 words long on average)
from many genres. Unlike the original gold corpus,
which lacked longer and structurally complex sen-
tences due to annotation costs, the Brown corpus
provides broader structural and topical diversity.

Whereas Gibson and Lawley used GPT-Too (Mager
et al., 2020)3, we apply Parameter Efficient Fine
Tuning (PEFT) to a larger base model for improved
performance with minimal training overhead.

3 Expanding the ULF Training Data
Using the Penn Treebank Corpus

We now describe how we obtained ULF formu-
las from Brown corpus Penn Treebank (Marcus
et al., 1993) syntax trees, for use in fine-tuning the
Gemma-2B model (and also GTP-Too, for compari-
son). The idea behind use of the Brown corpus was
that syntactic constituency trees roughly indicate
the compositional semantic structure of sentences,
and this should facilitate transduction into ULF. For
example, a syntactic VP structure of form

(VP (VBD saw) (NP (DT the) (JJ white) (NN swan)))

(in the Penn Treebank format) can be regarded
as indicating that the meaning of the verb phrase
is obtained by applying the meaning of the past-
tense verb “saw” to the meaning of the object noun
phrase (NP). The result is a monadic predicate that
can be applied to the meaning of an NP subject
such as (NNP Bob) to obtain a sentence meaning.
Similarly, the structure of the object NP suggests
functional application of the determiner (DT) mean-
ing and the adjective (JJ) meaning to the meaning
of the nominal predicate, (NN swan).

3.1 Rule-based adjustments to the Treebank
trees

However, there are some immediate adjustments
that are needed to obtain a type-coherent structure.
First, the past-tense component of (VBD saw) ac-
tually has sentence-level significance, placing the
seeing-event (with the white swan as its object) in
the past relative to the time of assertion. In ULF,
(VBD saw) is split into a pair of semantic con-
stituents, (PAST see.v), where “see.v” is an object-
taking and subject-taking predicate, and PAST is
an unscoped tense operator. Second, the structure
of the object NP is insufficient to determine that
the adjective should first be applied to the nominal
predicate, forming the meaning of “white swan”;
this modified nominal predicate is then operated
upon by the determiner. In ULF, such determiner
phrases are again unscoped semantic constituents.
The resulting ULF phrase is thus

3“GPT-Too” appears in the title of this paper, referring
to small, medium, and large versions of GPT-2 used by the
authors for English generation from AMR.



((PAST see.v) (the.d ((MOD-N white.a) swan.n)));

this incorporates a third adjustment, namely con-
version of the predicate “white.a” to a nominal-
modifier via type-shifting operator MOD-N. This
is needed if we take the (natural) view that “white”
is lexicalized as a simple predicate (consider “Snow
is white”), rather than as a predicate modifier like
“fake”.4

Thus, while syntactic constituency provides a
rough indication of semantic structure, a variety of
adjustment rules are needed to map Treebank trees
to ULF. We use nearly 400 such rules, dealing with
issues such as different uses of quotes, punctua-
tion and brackets, inserting silent complementizers,
regularizing complex quantifiers (such as “almost
all” or “one out of six”), interpreting auxiliaries,
distinguishing prepositional phrases used as predi-
cates, predicate modifiers, or argument-suppliers,
distinguishing the different semantic functions of
participial VPs and subordinate clauses, expand-
ing quantifying pronouns into quantifier-noun com-
binations (e.g., “nothing,” “everybody”), dealing
with displaced constituents, interpreting several
types of comparatives, and many more.

The writing of these rules was made relatively
straightforward by use of our tree transduction lan-
guage TT, a simpler, more easily used variant of
TTT (Purtee and Schubert, 2012). TT match pat-
terns closely mirror the input tree structure, i.e.,
every sublist in a pattern must correspond to a sub-
list in the target list structure. The simplest pattern
elements can be integers i = 1, 2, ..., which will
match up to i successive atoms or lists. More of-
ten, we make use of TT’s regex-like constructs,
based on match predicates starting with charac-
ters ‘!’, ‘?’, ‘*’, ‘+’ to signal matchability to 1
item, 0 or 1 item, 0 or more items, and 1 or more
items respectively; there are over 100 such predi-
cates (separately defined). Some cover extensive
data, for example, !event-noun covers about 220
event nouns, and a predicate checking for purely
intransitive verbs covers over 5,300 verbs. A sec-
ond class of match predicates, starting with a dot
and applicable to atoms only, are interpreted via
ISA-hierarchies. For example, .TIME-PERIOD checks
whether the atom being matched “is a” word like
second, day, summer, pause, ..., by checking for
an ISA-chain of 0 or more links from the word to

4Modified nominals cannot in general be viewed as a con-
junction of two predicates, as in “is white and is a swan”; for
instance this fails for “white wine,” “plastic swan,” or “utmost
danger”.

.TIME-PERIOD. (Lexical category can be checked by
another ISA-predicate such as .NN/NNP, defined to
match either NN or NNP.) Since TT allows for arbi-
trary nesting of expressions, the match predicates
can be used at any structural level. Here is an exam-
ple of the use of this language to expand a temporal
NP such as “last summer,” as represented in a con-
stituent tree, into a temporal adverbial “during last
summer”:

(defrule *add-prep-for-definite-embedded-time-np*
; E.g., "I know what you did {last summer}"
; parse fragment: (VP (AUX DID)
; (NP (JJ LAST) (NN SUMMER)))
'((!atom *expr (!not-prep-or-symb +expr)

(NP +expr (.NN/NNP .TIME-PERIOD)) *expr)
(1 2 3 (ADVP (-SYMB- adv-e)

(PP (-SYMB- {during}.p) 4)) 5)))

Every rule consists of a match pattern and an out-
put pattern. Here the match pattern (!atom *expr
(!not-prep-or-symb ...) (NP ...) *expr) matches
any phrase in parentheses starting with exactly one
atomic expression, followed by zero or more arbi-
trary expressions, followed by two subexpressions
of specified forms (the second one being the tem-
poral NP), and possibly additional ones.

When a match succeeds, the matched con-
stituents can be referenced in the output pattern
by their position. In the example, position indices
1–5 correspond to the five top-level matched expres-
sions. Non-numeric elements are copied into the
output directly, though TT also allows for output
elements that are functions of matched input ele-
ments. Note the PP adverbial containing during.p
(with the time-NP as its complement) in the out-
put. To refer numerically to matched constituents
lying within subexpressions of the match pattern,
TT uses integers joined by dots. For example, 4.3.2
would refer to whatever piece of the input expres-
sion matched .TIME-PERIOD.

3.2 From adjusted trees to ULFs

Once transformed, trees are semantically inter-
preted via a compositional process driven by syn-
tactic types and morphological cues. Lexemes re-
ceive type tags via about 50 rules based on word
POS – which in many cases has been made seman-
tically more revealing through preprocessing rules,
e.g., WDT-REL instead of WDT for which or that
used as a relativizer. Type-shifting operators in-
troduced during preprocessing likewise facilitate
function-argument application throughout. The
compositional mapping from preprocessed phrases
to ULFs is then quite simple, involving a little over



a page of code.
ULFs derived this way proved effective: in

a small evaluation (11 sentences), the raw
Brown-derived ULFs scored 0.81 F1 on EL-
SMATCH and 0.82 on SEMBLEU, with 952 triples.
Our final dataset includes 51,649 English-ULF
pairs—substantially larger and more varied than
the original gold corpus.

4 Models and Metrics

4.1 Language base models

Our model for deriving ULF from English builds
on the training architecture developed by Gibson
and Lawley (2022), which in turn built on GPT-Too,
an AMR-to-English system (Mager et al., 2020).
When run in reverse, Gibson and Lawley’s model
was shown to also be state-of-the art for the En-
glish to ULF parsing task. We apply Gibson and
Lawley’s architecture, fine-tuning on English-ULF
sentence pairs to maximize the joint probabilities
of English and ULF tokens. We also use their train-
ing process, but instead fine-tune Quantized Low
Rank Adapters (QLoRA) (Dettmers et al., 2023) of
the pretrained model to perform parameter-efficient
fine-tuning (PEFT) to leverage a large base model.
The previous LLM model used the 774M param-
eter version of GPT-Too (i.e., GPT-2L), while we
use the 2.5B parameter Google Gemma-2B which
would previously have been infeasible to train with-
out parameter-efficient fine-tuning.

4.2 Metrics

We evaluated the model on both a test subset of the
previous hand-annotated (gold) dataset (n = 174)
and a test set of Brown corpus derived ULFs
(n = 174) using the metrics EL-SMATCH and SEM-
BLEU. These metrics are borrowed from standard
AMR evaluations, but the type-shifting operators of
ULF and other differences from AMR require intro-
duction of additional nodes and links to obtain Pen-
man format, after which SMATCH and SEMBLEU

can be applied. The SMATCH (Cai and Knight,
2013) score is calculated by (1) extracting all the
triples from a hypothesis and reference AMR (e.g.,
see Figure 1), (2) performing a greedy search to
unify variable names between the hypothesis and
reference, and finally (3) calculating F1, precision,
and recall scores from the matching triples. As
noted by Groschwitz et al. (2023), current AMR
parsers achieve high SMATCH scores but can still
make frequent errors. This is partially because the

SMATCH score suffers from two immediate prob-
lems: Only taking into account triples (two vari-
ables/concepts and a relations) means that larger
semantic structure is not captured in the evaluation;
and unifying the variables leads to over-counting
matching triples where the relation matches but the
variables do not map to the same concepts.

instance(z0, assert-02) ARG0(z0, z1)
instance(z1, report-01) ARG1(z0, z3)
instance(z2, news) ARG1(z1, z2)
instance(z3, dump-01) ARG1(z3, z4)
instance(z4, chemical) destination(z3, z5)
instance(z5, river)

Figure 1: Extracted triples for the AMR corresponding
to the sentence, “The news report asserted that chem-
icals were dumped into the river.” z0 through z5 are
variable names, the predicates instance, ARG0, ARG1,
and destination are the edges of the AMR graph
which capture semantic relations between variables. The
instance predicate maps variables to concepts.

SEMBLEU scores are instead calculated by
(1) extracting all n-grams from the hypothesis
and reference AMR, where an n-gram includes
n concepts connected by n − 1 relations (e.g.,
assert-01 :ARG1 dump-01 :ARG1 chemical is
a 3-gram roughly corresponding to the meaning
“chemicals being dumped is asserted”), (2) calcu-
lating an adjusted accuracy of matching n-grams
between the hypothesis and reference, (3) multi-
plying by a brevity penalty. By including longer
chains, SEMBLEU captures more complex seman-
tic structures, and not using variables solves the
over-counting problem of the SMATCH unification
strategy. Because of this and in accordance with
previous ULF parsing work, we use SEMBLEU

(Song and Gildea, 2019) as a primary evaluation
metric and EL-SMATCH for a more detailed break-
down of F1, precision and recall. EL-SMATCH is
fully described by Kim and Schubert (2016), but
is essentially an adaptation of SMATCH to evaluate
ULFs as sets of triples in the same way as AMR.

5 Results

5.1 Results on the gold data in comparison
with earlier ULF parsers

Using the 51,649 English-ULF dataset we obtained
from the Brown corpus, and employing PEFT, we
achieved major gains in all metrics as compared to
previous ULF parsers – see Table 1. The results in-
dicate that stronger base models improve evaluation
metrics across the board, but have a less substantial
effect than the new Brown-based dataset.



Base Model SEMBLEU EL-SMATCH

F1 Precision Recall
(Kim et al., 2021a): Transition model 0.47 0.59
(Gibson and Lawley, 2022): GPT-Too 0.43 0.63
Trained on Gold + Generated Set
(Juvekar et al., 2023): Transition model 0.49 0.60
Trained on Gold + Brown Set (our results)
GPT-2 124M 0.55 0.60 0.60 0.61
GPT-2 355M 0.66 0.69 0.70 0.68
Google Gemma 2B (PEFT) 0.68 0.72 0.73 0.71

Table 1: Results for models tuned on gold training set vs combined gold and Brown-derived training set.

The small gold dataset sufficed to train both Kim
et al.’s transition-based and Gibson and Lawley’s
LLM-based ULF parser to a level of performance
comparable with that of early AMR parsers trained
on much larger datasets. As noted in Section
2, Juvekar et al. (2023) obtained small improve-
ments over the original transition-based model
using up to 116,112 artificially generated, type-
consistent English-ULF pairs. The 51,649 English-
ULF dataset we obtained from the Brown corpus is
not as large as theirs, but we see substantial parsing
performance increases over their parser. We sus-
pect that this can be largely attributed to the fact
that Brown Treebank sentences are a diverse, nat-
urally occurring set, and that the carefully tuned,
rule-based tree-to-ULF parser is almost as accu-
rate as hand annotation of English sentences with
ULFs. The substantial gains in SEMBLEU scores
show that the model retrieves more individual con-
stituents, and that the overall coherence of the frag-
ments is higher.

5.2 Results on Brown-Derived ULFs

Our model’s performance is best described by the
results on the hand-annotated gold data. However,
since our parser was fine-tuned on a combination
of a (small) gold training set and a large set derived
from the Brown corpus, it is of interest to look at its
performance on Brown data in comparison with its
performance on the gold data. Differences are to be
expected, in part because the Brown data, though
less accurate, clearly impacted performance very
significantly, but also because some streamlining
of certain syntactic conventions (e.g., the handling
of auxiliary verbs and tense/aspect operators) was
incorporated into the Brown data which are still in
their old form in the gold data. The comparison is
provided in Table 2.

As expected, the scores on the Brown-derived
test set show substantially better SEMBLEU scores,
although surprisingly, the EL-SMATCH scores are
scarcely different. In other words, the parser gener-
ally matches the overall structure of Brown-derived
data better than for gold data, perhaps because of
the change in some ULF conventions, but the triple-
by-triple match structure is not greatly affected. If
we were to create a new gold set abiding by the re-
vised conventions, our parser’s performance likely
would fall somewhere between the results on the
gold and Brown-derived ULFs (i.e., between 0.68
and 0.76 on SEMBLEU). These results are also
surprising because the sentence complexity and
lengths in the Brown corpus are larger than those
in the gold ULF set.

5.3 Comparison to AMR parsers

To relate our work to AMR parsing, we compare
our ULF parsing results with results from two
AMR parsers in Table 3. Other AMR parsers
achieve similar SMATCH scores to (Drozdov et al.,
2022) on the AMR 3.0 benchmark dataset. Af-
ter the proof-of-concept GPT-Too parser (Mager
et al., 2020), the first seq2seq parser with bench-
mark results (Bevilacqua et al., 2021), scored 83.0
on AMR 3.0. More recently Bai et al. (2022) and
Vasylenko et al. (2023) build on (Bevilacqua et al.,
2021) achieving significant improvements (scores
of 84.2 and 84.6 respectively), using novel ideas
such as incrementally finding spans to abstract, and
inserting the corresponding concepts, treating the
transduction between text and AMR as symmetric,
and pretraining on AMR graph data rather than
(just) text. For parsers of other knowledge repre-
sentations, the recent English Resource Grammar
parser by Lin et al. (2023) (based on Minimal Re-
cursion Semantics) improves performance with a



Model SEMBLEU EL-SMATCH

F1 Precision Recall
Gold ULF Test Set 0.68 0.72 0.73 0.71
Brown-Derived ULF Test Set 0.76 0.72 0.72 0.72

Table 2: Parser performance on hand-annotated (gold) test set versus performance on a test set of Brown-derived
English-ULF pairs.

Parser Model SEMBLEU SMATCH/EL-SMATCH

AMR3-structbart-L (Drozdov et al., 2022) 0.56 0.83
AMR2-joint-ontowiki-seed42 (Lee et al., 2022) 0.60 0.86
Our Model 0.68 0.72

Table 3: Hand annotated test set comparison to AMR parser performance.

neural-symbolic approach, where prior knowledge
from the symbolic parser alleviates inaccuracies
of the neural model on out-of-distribution evalua-
tion. A recent DRT parser from Yang et al. (2024)
similarly proposes a neural-symbolic parser that
predicts the scope structure with a rule or depen-
dency based resolver.

As was seen in the discussion of sentences (1)
and (2), the greater expressivity of ULF, and its
fidelity to the full contents of sentences, results in
more variety and complexity in ULF constructions
relative to AMR. To re-emphasize this point, sen-
tences such as “Dogs are barking” (thus, presently),
“Dogs bark” (thus, generically), and “A dog barked”
(thus, in the past) map to distinct ULF represen-
tations, while they are assigned the same AMR.
This results in higher SMATCH scores for AMR
parsers. Other knowledge representations also tend
to blur semantic distinctions, or degrade for com-
plex sentences (though apparently not for MRS).
For example, DRT parsers score lower on datasets
with long and complex sentences (SMATCH score
of 87.1 on short example sentences versus 48.7 on
longer sentences) (Yang et al., 2024).

Unlike the impressive SMATCH scores of AMR
parsers, their SEMBLEU scores are weaker, suggest-
ing that while they are able to adequately generate
correct constituents, the arrangement of those con-
stituents is less predictable than for ULF. While
the greater expressivity and semantic fidelity of
ULF may make it more difficult to generate indi-
vidually correct constituents, the type coherence of
ULF may also help improve the overall structure
of the parses. When introducing the SEMBLEU

evaluation metric, Song and Gildea (2019) show
that SMATCH marks edges as identical regardless
of the nodes they attach, leading to inflated scores

for parsers that don’t accurately capture sentence
structure. From our increased SEMBLEU score, we
tentatively infer that the ULF type structure is less
susceptible to mistakes of this sort.

5.4 Error Analysis

The most common errors we observed in the results
for testing on the gold test set were missing im-
plicit references, not generating multi-sentence con-
structions, and incorrectly identifying proper nouns
and quotations. Implicit references (semantic con-
stituents not appearing in the surface text) should
show up in ULFs as pronouns or other elements
in curly brackets. Errors are possibly due to the
Brown-derived ULFs having different proportions
of the most common implicit references. The most
common form in the gold ULFs is {YOU}.PRO
(typically implicit in English imperatives), account-
ing for over half the implicit references in the gold
test set but only 15% of the Brown-derived set.
The latter contains more instances of {REF}.N
and {FOR}.P (as in “This _ will serve _ to ap-
pease him,” where the missing items are a nominal
and a purposive “for” applied to the action type
“to appease him”). Additionally, errors in multi-
sentence constructions were expected because the
Brown-derived ULFs only contain single sentence
examples while the gold set contains examples with
multiple punctuation-separated sentences.

The less frequent remaining errors include over-
generating special operators and macros, and in-
correct bracketing. Specifically, the parser over-
generates the N+PREDS macro (typically used for
combining a noun with its postmodifiers) which is
again over-represented in the Brown-derived ULFs
as compared to gold. Also the order in which
pre- and post-modifiers are applied to a noun may



be different in gold sentence ULFs and in parser-
generated ULFs, though it’s sometimes unclear
which order is correct. For example, the sentence
“Name the disposable razor that ‘costs about 19
cents.’ ” was hand annotated with

({you}.pro (name.v (the.d (n+preds
((mod-n disposable.a) razor.n)
(that.rel ((PRES cost.v) (about.adv-s
(ds currency ``19 cents''))))))))

but our model parses it to
({you}.pro (name.v (the.d
((mod-n disposable.a) (n+preds razor.n
(that.rel ((PRES cost.v) ((about.mod-a | 19.a|)
(plur cent.n)))))))))

These variant modifier structures have slightly dif-
ferent semantics, but neither is outright mistaken.
The other difference between the hand annotation
and the parse is the use of the domain-specific
representation of currency in the gold ULF, (ds
currency “19 cents”) and the adv-s vs. mod-a
difference. The Brown-derived ULFs do not in-
clude domain-specific annotations, so, naturally,
the parser handles “19 cents” differently. Now, “19”
to be suffixed with .a (the adjectival version of the
numeral) and “about” is suffixed with .mod-a, so
that it functions as an adjective modifier. In the
hand-annotated sentence, the full “19 cents” is an-
notated in the domain-specific currency context, so
there is no adjective 19.a for “about” to modify, and
it is instead annotated with suffix .adv-s. Our model
parses sentences like this well, but because of sim-
ilar discrepancies that lead to larger differences
from the hand-annotated ULF, their correctness is
not reflected in our evaluation metrics.

6 Conclusion

We presented an LLM-based parser that demon-
strates significant gains in parsing English to ULF,
driven by a new dataset of English-ULF pairs au-
tomatically generated from Brown corpus Penn
Treebank trees. These gains are evident across all
metrics, especially SEMBLEU, which reflect the
parser’s ability to capture semantic relations and
maintain coherence. Our approach outperforms
previous ULF parsers and some modern AMR
parsers, showing ULF’s potential to represent nu-
anced semantics and complex sentence structures.
While evaluation scores on gold test data are lower
than on Brown-derived test data, this likely results
from updates to ULF annotation principles since
the gold data was created, so revising the gold data
to align with current standards would be valuable.

With the new Brown ULF dataset, data scarcity
is no longer the main challenge in ULF parsing.
Future research can instead focus on incorporating
learning techniques from AMR parsing, extending
the augmentation strategy of Juvekar et al. (2023),
or using ULF’s type system to constrain generation.

The increased reliability of ULF parsing will
make inference and reasoning in AI systems more
broadly applicable. An example of a system that
relied on rule-based semantic parsing into ULF was
the DAVID virtual human (Kane et al., 2020) de-
signed to answer questions in a physical “blocks
world”. DAVID was answered user questions like

“How many red blocks were to the left of a blue block,
before I moved the Nvidia block?”, based on ob-
serving and modeling blocks’ spatial relations via
cameras, and mapping questions to ULF for spa-
tial model queries. Similarly, the SOPHIE system
(Kane et al., 2023), a virtual cancer patient used to
help train physicians, makes use of ULF inference
in generating dialogue responses. The authors de-
scribe a future improvement to their system using
a learned ULF parser, to support more logically
coherent inferences within the global context.

An intriguing future research direction compat-
ible with our approach to logical form would be
to use the type structure of ULF for unsupervised
language learning. It appears that the types of ULF
and Episodic Logic—names, generalized quanti-
fiers, predicates, predicate and sentence reifying
operators, predicate and sentence modifying op-
erators, and a handful more—suffice for human
languages in general. We could treat these types as
semantically “innate,” and take language learning
to be learning a mapping from word sequences to
structures instantiating these types. The variability
of languages, besides different vocabularies, would
correspond to different strategies for linearizing
and abbreviating internal graph-like structures to
facilitate interpretation. Additional learning sup-
port besides textual corpora would be needed, such
as visual grounding; but it seems that ULF/EL-like
presupposed type structure should greatly reduce
the demand for data in the learning process.
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