Much combinatory reasoning can be short-circuited by using special
graphical and geometrical methods when determining certain
relationships—the ones people grasp without thinking.
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At the University of Alberta, we are trying to
construct a system with enough commonsense knowl-
edge and fluency in English to be able to answer simple
questions about a wide range of mundane subjects.*
Since we would like the system to remain comprehensible
and efficient no matter how large or varied its knowledge
base, our emphasis has been on theoretically well-
founded design at all stages.!:2

Several kinds of inference problems arise constantly in
question-answering processes, which, without special
handling, can absorb large computational resources.
One kind requires determining how two types of things
are related, e.g., whether person subsumes girl, or
whether girl is incompatible with computer; others
require determining these or similar relationships among
parts of objects, colors, or times.

This collection of special inference domains is not as
haphazard as it may seem. As creatures of space and
time, equipped with certain sensory organs, surely we
have special ways of modeling our perceptions of color,
for example; of categorizing and cross-correlating the
entities whose localization in space and persistence in
time renders them cognitively coherent {type taxono-
mies); and of analyzing spatial properties, such as parts
structure, and the temporal behavior of these entities. To
match our cognitive skills, Al systems will need analo-
gous special methods.

The methods described here are designed to supple-
ment a deductive question-answering algorithm that is
now operational.t The algorithm draws on a base of
logical propositions organized as a semantic net. The net
permits selective access to the contents of individual
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““mental worlds’’ and narratives, to sets of entities of any
specified type, and to propositions involving any speci-
fied entity and classified under any specified topic. For
example, if the story ‘‘Little Red Riding Hood’’ is
inserted into the net (in logical form), the set of all
propositions concerned with the wolf’s appearance can
be separately and efficiently retrieved. In addition,
certain property-inheritance mechanisms facilitate the
transfer of information from generic entitites and their
parts (such as wolf) to particular entities and their parts
(such as a real-world wolf).

In speaking of our system as a semantic net, we are not
speaking from a particular camp. We believe that the
issues addressed are bound to arise in any general knowl-
edge representation sooner or later, whether it is based
on semantic nets, frames, scripts, production systems, or
anything else. These nominally disparate formalisms
have much in common and appear to be converging
further; for example, all incorporate a predicate-logic-
like propositional language (however disguised in
newspeak or enmeshed in code), all provide ways of
clustering information so that the information brought
to bear on a given task at a given time can be sharply
limited, and all have (or are to be furnished with)
property-inheritance mechanisms.

*A more detailed accounting of this work is available as technical report
TR83-3 from the Department of Computing Science, University of
Alberta, Edmonton, Alberta T6G 2H1.

fA report on this project headed by J. de Haan and L. Schubert is in
preparation. Questions are at present posed logically. the English **front-
end’’ being incomplete.
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Figure 1. A partitioning hlerarchy for physical object

types; e.g., [Hiving-thing P plant creaturs]. Some of the number brackets based on preorder numbering of the hierarchy are shown.

Ihoso :llow the system to determine subordination and exclusion relationships in constant time; e.g., “orchid” Is subordinate to
plant,” since (30, 30) is Included In (3, 52), and Incompatible with “person,” since (30, 30) and (54, 64) are disjoint.
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Recognizing type relationships

We believe that our net access organization and in-
heritance mechanisms do about as much as can be done
to ease the computational burden of any general in-
ference algorithm. By radically limiting the set of propo-
sitions allowed in the reasoning mill at any time, these
mechanisms help to prevent the combinatorial explo-
sions that are apt to bring the mill to a halt.

We need to do more than just limit the number of
propositions to allow fast question answering, however.
For, if all possible derivations of the answertoa question
are long, then any general reasoning strategy will prob-

ably do a great deal of searching before finding one, even
when working with a small set of propositions.

It turns out that standard deductive derivations of the
answers to many simple questions are indeed rather long.
Counsider the guestion, **Whom does Mary love?” The
desired answer is the set of persons Mary is known to
love. Now suppose that the system finds, by retrieval of
information about Mary under the topic ‘‘emotional at-
titudes’” that Mary loves John and her prize orchid plant.
We must confirm that John is a person (and therefore a
suitable answer) while the orchid is not. The former sub-
problem is not too taxing, assuming that the system has
the facts, “*John is a boy’’ and *‘Every boy is a person’”’
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at its disposal, and these are selected as relevant.* The
latter subproblem, though, is harder than it ought to be.
The following inference chain is required to solve it
(where o is the beloved orchid):

(1) oisanorchid known
{2) Everyorchidisa soft-stemmed plant known
(3) oisasoft-stemmed plant from (1), (2)
{4) Everysoft-stemmed plant is a plant known
(5) oisaplant from(3),(4)
(6) Everypersonisacreature known
(7} Nocreatureisaplant known
(8) Nopersonisa plant from (6),(7)
{9 oisnotaperson from (5),(8)

This example is not the worst case; if, for example,
Mary also loves her piano, more steps will be required
to rule it out as a candidate answer, assuming that
“‘creature’’ leads upward to “‘living thing’’ in the tax-
onomy of types (see Figure 1), while “‘piano’’ leads to
““‘rmusical instrument” and hence to ‘‘artifact,” and
hence to “‘non-living thing,”” known to preclude *living
thing.”* Yet subproblems such as establishing the non-
personhood of an orchid or piano should not detain the
reasoning system significantly.

In essence, we wish to be able to perform type com-
patibility checks for pairs of type concepts quickly. A
pair of propositions such as ““o is an orchid,”’ **o is a per-
son’ should be directly resolvable, allowing proofs such
as (1) through (9) to be short-circuited. Similarly, prop-
ositions that explicitly relate types to types, such as
“Every orchid is a living thing,” should be directly
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Figure 2. The upper leveis of a partitioning graph for the human body. Each P-token represents a partitioning assertion dividing the
node to which It is linked above into the nodes to which it Is iinked below. The solid lines define a partitioning hierarchy, and the

evaluable to true or false, allowing their proofs or
disproofs to be short-circuited. This dual need for re-
solving and evaluating propositions arises in all the
special domains considered.

One method is based on finding intersecting upward
paths in a type graph. This idea can be implemented as
graph algorithms3 or as special theorem-proving strate-
gies.# Our own method, though closely related, entirely
avoids path traversals and (under certain assumptions)
determines type relationships in constant time.

The simplest version of the method can be understood
by referring to Figure |. The figure depicts a hierarchy of
“‘P-assertions,’’ each logically of the form [T P
T, Ti], meaning that type concept 7T is parti-
tioned into the mutually incompatible, jointly exhaustive
subtypes T\, ..., T;. Each concept is labeled with a
number bracket consisting of its preorder number and
the highest preorder number among its descendants. If
one node is an ancestor of another, its number bracket
(regarded as an interval) contains that of the other. If
neither is an ancestor of the other, the number brackets
are disjoint. (A. Aho et al.’ discuss preorder traversal of
trees in more detail.) These facts obviously allow com-
patibility and subordination checks in constant time.

“For those versed in predicate logic, our formal representation of these
facts for input to the semantic net would be [John boy) and vx{]x boy] —
{x person]). This representation is based on an English-like infix form of
predicate logic in which the predicate symbol, such as “‘boy’’ or
“‘part-of,"” always follows its first argument (the subject) and is followed
by the remaining arguments, if any. Throughout this article, when we
refer 1o “*facts,”” “‘propositions,” or ‘‘assertions,”’ we mean this type of
representation.

broken lines define three additonal, superimposed hierarchies.
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The method can be generalized slightly. First, in-
complete partitionings can be accommodated by using
remainder categories to complete them. More signifi-
cantly, overlapping hierarchies can be accommodated by
equipping each ccncept with a separate number bracket
for each hierarchy to which it belongs, along with a
suitable hierarchy identifier. A compatibility or
subordination check for two concepts now begins with a
search for acommon hierarchx{ identifier, and if one is
found, proceeds to the comparison of number brackets.
This check is still very fast, assuming that noconcept par-
ricipates in more than a few (say, two or three) hierar-
chies. Our atiempts to draw up comprehensive concept
taxonomies appear to support this assumption.

The generalized method, however, is logically in-
complete, as we shall see in the following discussion of
parts taxonomies.

Recognizing part-of relationships

The part-of structure of an object can be represented
in essentially the same way as a taxonomy of concept
types. We introduce an object partitioning relation P,
with [x P xis .« o Xl expressing that object x is (ex-
haustively) partitioned into parts xi,. . - X 1f we simp-
ly want to assert that x has a part y, we can do sO by
writing [x Py z], where 2 is a possibly empty remainder
part.

Figure 2 shows a partial human anatomy, naively con-
ceived, in the form of a P-graph. It consists of a main
hierarchy and superimposed subsidiary hierarchies for
the skeleton, the limbs, and the combination of neck and
trunk y. (We are glossing over some logical niceties con-
cerning the interpretation of graphs whose nodes are
generic entities, such as *‘pelvis’” and “left leg.”")

The algorithm sketched for type graphs could be used
here for detecting the incompatibility of such pairs of
propositions as

¥ is John's pelvis; x is John's left leg,
or to determine the truth values of such propositions as

If xis John's skull and ¥ is John's skeleton, then x is
part of v,

using number brackets based on preorder numbering of

the overlaid hierarchies in the figure.
While useful, the algorithm is incomplete, as already

noted. Consider the question, “'Is the spine part of 2"’
The response would be “unknown,” since “‘spine’” and y
do not lie in a common hierarchy; yet the graph certainly
allows the inference that the spine is part of y, since a
P-assertion divides the spine exhaustively into neckbone
(cervical vertebrae) and backbone, and these have up-
ward paths to y. Similarly, we may ask whether the spine
is part of the limbs, and again the response would be
“unknown,’’ since “‘spine’’ and “limbs’” lie in no com-
mon hierarchy; yet a negative answer can be deduced
from the graph.

The incompleteness of the methods just discussed has
led us to seek more powerful methods. One method is
complete and efficient for the class of “‘closed”

P-graphs, of P-graphs.(‘ The graph in Figure 2 can be
closed by adding the (logically redundant) P-assertion |x

Pxy X3 -« o x-]. A method for the still larger class of
ssemiclosed”” p-graphs” has been proved correct and
complete.®

While closed and semiclosed P-graphs appear to pro-
vide much of the flexibility required for representing
part-of (and type) structures, they still restrict us to cer-
tain kinds of overlaid hierarchies. Are there no efficient
inference methods for unrestricted P-graphs, thatis, for
arbitrary sets of P-assertions?

Unfortunately, the chances of finding methods requir-
ing no more than linear storage and time relative to the
size of a P-graph are slim, cince we would have to solve
the famous unsolved problem «p=NP?" affirmatively.
Thus, we will probably have to be content with in-
complete special methods for type and parts tax-
onomies—a condition that is by no means disastrous,
since the special methods are intended to supplement,
not to replace, the general reasoning algorithm.

Recognizing color relationships

Imagine a witness to a bank robbery being questioned
about the color of the get-away car. His impression was
that the car was tan, and he is asked, ‘‘Was the car
brown?’”’ Clearly the answer should be ““Yes, tan,” and
this answer could easily be deduced from the following
(where ¢ is the car in question}):

(1) cistan
(2) Everything tan is brown.

If the question had instead been ‘“‘Was the car maroon?”’
a negative answer could have been inferred in four proof
steps, from (1),(2), and the following:

(3) Everything maroon is red.
(4) Nothing red is brown.

These examples follow the pattern of the type and
PART-OF inferences exactly and suggest that some sott
of color hierarchy or graph should be used to eliminate
searching. In fact, the 11 basic color terms of English
could be introduced via the type partitioning,

(5) [colored P red orange yellow green blue purple
pink white black gray brownl,”
and (2) could be reformulated as something like
(6) [brown P tan rust midbrown chocolate. . . 1,

and similarly for (3), allowing either of the above ques-

tions to be answered by simple hierarchy methods.
However, a series of complications has led us away

from graphical methods toward geometric methods.
First, partitionings like (6) are inaccurate, since shades
like tan, midbrown, and chocolate probably overlap.
More accurate characterizations require partitioning
these shades into overlapping and nonoverlapping parts.

“Weregarditasa reasonable claim that every (uniform) color is at least a
margiral nstance of one of these basic colors, though for pragmatic
reasons, people generally avoid applying color terms (o their marginal
cases

COMPUTER



Shades like turquoise and lime, which straddle bound-
aries between basic colors would also have to be sub-
divided, adding to the proliferation of partitionings.

Second, when we attempted to deal with “*hedged””
color relations, such as the statement that lime is sort of
yellow and also sort of green, we realized that the color
partitioning graph would at least have to be augmented
with adjacentyand/or nonadjacen(]relations. But even
these additions would leave us totally unequipped to deal
with other kinds of color properties and relationships
such as lightness, purity, saturation, complementarity,
and the warm/cool distinction. Geometric representa-
tions, on the other hand, offered a handle on all these
problems. If colors could be represented as simple re-
gions in some color space, all their properties and rela-
tionships could be read off their parametric representa-
tons.

With this objective in mind, we undertook a search for
a suitable color space. Despite their commercial popular-
ity, we rejected schemes based on mixing three primaries
because they are theoretically incapable of representing
all perceptually distinct shades of color? and because the
English color terms correspond to rather complex poly-
hedra in such schemes.

Our ultimate choice was a cylindrical representation
(Figure 3}, arrived at by imagining any color to be com-
posed of some amount of a pure, monochromatic color
plus certain amounts of black and white. Thus, one di-
mension runs through the continuum of rainbow hues,
arranged in a circle, while the others parameterize the
amount of black and white present (see figure caption).

This model, similar to models that are well-known to
color theorists, ! covers the full range of perceptible
shades. (Note that the saturation and lightness parame-
ters used in these models do not coincide with the purity
and dilution parameters of our model .) Our model ap-
pears to be unique in one respect because it renders each
English color term simply as a region bounded by six
coordinate surfaces (defined by three pairs of upper and
lower parameter bounds). In all other models we are
aware of, the boundaries are quite irregular. (Some ad-
justments to the simple regions in Figure 3 may be re-
quired. Perhaps part of the brown region separating red
from black should be maroon or purple. We plan to in-
vestigate this empirically.)

With this color geometry, we can check any desired
relationship between pairs of color regions, such as inclu-
sion, overlapping, and adjacency, in a small, fixed
number of comparisons. Moreover, it is easy to define
nonbasic terms such as turquoise, maroon, beige, scarlet,
and so on, as regions bounded (like basic color regions)
by coordinate surfaces. Color properties such as light-
ness and purity and relations such as complementarity
can be computed in fairly obvious ways.

We have tacitly assumed in the previous discussion
that the color cylinder will contain explicit representa-
tions of all colors for which a compatibility check might
ever be required. We can relax this assumption, allowing
for the possibility that certain nonbasic colors are encod-
ed only in terms of their qualitative relation to the basic
colors. For example, turquoise might be axiomatized as
being both sort of blue and sort of green, and lime as be-
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Figure 3. The 11 baslc colors in a hue-purity-dllution color space with the cool shades “lifted away.” Purity decreases as black is
added to a pure color, and dilutlon Increases as white |s added to it. Purity = pure colori(pure coior + black), and dilution =
whitei(pure color + black + white). The numerical values have been chosen on pursly intultive grounds. They could be quite
drastically sltered without affecting the results of the algorithms based on the model, as long as the reglon adjacency relationships

are not changed.
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ing both sort of green and sort of yellow. There is a
method that allows the incompatibility of characteriza-
tions such as ‘‘sort of blue’’ and ‘‘sort of yellow’’ (and
hence of turquoise and lime) to be detected by table fook-
up.®!! The table also covers negated deseriptions of this
type, with and without the *‘sort of”’ qualifier.

Recognizing time relationships

Did the first moonwalk by an astronaut precede the
first space shuttle launch? Most people can answer this
question quickly and easily in the affirmative. The
answer will perhaps be based on the feeling that the first
moonwalk occurred prior to 1970, while the shuttle pro-
gram became operational only in recent Yyears. (More
details than that may be recalled, of course.) Clearly,
question—answering systems knowledgeable about events
will likewise have 1o be able to store and recall approx-
imate or exact event times.

The ability to retain absolute time information is not
enough, however, since people easily recall the time
order of connected sequences of events even without
such information. Consider the fairy-tale, «Little Red
Riding Hood,” for example. Did LRRH meet anyone
before arriving at her grandmother‘s cottage? The
answer is ‘‘the wolf.”' In our system, the question-
answering attempt would begin with associative retrieval
of events that fit the pattern <. RRH encounters charac-
ter x.”” Presumably, the events retrieved would include
not only the first encounter with the wolf, but also the
fateful second encounter, as well @ the ultimate en-
counters with the gamekeeper and with the grandmother.
Similarly, LRRH’s arrival at the cottage would be re-
trieved associatively. The remaining task is then to sort
out the prearrival encounters from the postarrival en-

counters, and for this task we need efficient methods for
checking the time order of events.

Our representation for time encodes time intervals in
terms of their end points, with a directed arc connecting
each pair of time points whose order is known explicitly.
The graph generated by a narrative is then an acyclic
digraph (except for reentrant time travel stories). Any
ordering relation implicit in it can be extracted by trac-
ing fromone point to the other, a linear-time operation
relative to the number of edges of the graph.

As in the case of the other inference domains consid-
ered, however, we would prefer constant-time checks to
linear searches. (In this respect, we would like to improve
on heuristic methods such as those described by K. Kahn
and G. Gorry.12 Unfortunately, no methods are known
for extracting ordering relationships from arbitrary
acyclic digraphs in sublinear time without incurring
nonlinear storage cost. (However, T. Kameda!? gives a
constant-time method for certain restricted kinds of
planar acyclic digraphs.) Rather than investing effort in
this research problem (which would have limited pay-off
in any case, since we would also like to introduce ab-
solute times and durations or bounds thereon), we have
proceeded pragmatically.

Roughly, the idea behind our scheme is to assign nu-
meric values (pseudotimes, $O to speak) to time points in
their time order, when this order is known. To the extent
that this assignment is possible, the time order of two
time points can be checked in constant time by compar-
ing their pseudotimes.

Figure 4 illustrates the kind of time graph determined
by a narrative. Nodes denote time instants and are
numbered in the order they are added to the graph. Also
the pseudotimes {more or less arbitrarily incremented in
steps of 1000 when not bounded above) are shown beside
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Figure 4. Time graph for a narrative. The

chain. The four distinct node shapes distingulsh the fou
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e nodes are pseudotimes, used to check time order within atime
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the nodes, Typically, narrative events correspond 1o
pairs of time nodes, such as I,2and 3, 4). The graph con-
sists of a collection of time chains, each with its own
pseudotime sequence. In the figure, different node
shapes are used for the different time chains; actually,
this distinction is made by numerically typing each chain
and maintaining a Separate structure for interconnec-
tions between types {(shown as broken links).

We can use the graph to check the time order of nodes
2and 18, for example. After determining that 2 and 18
belong to different chains, the chain-to-chain {type-to-
type) connections would be searched, yielding the cross-
type link (4, 16) from the first to the second chain. Since
the pseudotime of node 2 is less than that of node 4, and
the pseudotime of node 16 is less than that of node 18,
the answer ‘2 before 18" js returned.

Obviously time checks restricted to one chain require
only one comparison; the worst-case computation time
for time checks across chains is proportional to the
number of chain-to-chain connections. This number is
typically much smaller than the total number of links in
the time graph, as far as we can tell from sample time
graphs for newspaper stories several paragraphs long, a
fairy-tale (“Little Red Riding Hood”’), and excerpts
from Hemingway’s The Old Man and the Seq and froma
book of European history.

An extension of the algorithm we are developing in-
volves maintaining time bounds that delimit the actual
time of each node and the actual duration of each link
where such information is available. Maintaining such
bounds by propagating upper bounds backward and
lower bounds forward is a fairly simple matter,

The time graphs and associated algorithms provide a
basis for the fast computation of a wide variety of tem-
poral properties and event relationships, including time
order, overlap, inclusion (during), and duration; exact or
approximate time of occurrence; and exact or approx-
imate elapsed time between events. Allthese are easily ex-
pressed in terms of the order of time points marking
beginnings and ends of events, actual time bounds on
these time points, and bounds on actual time intervals
separating them.

We have shown that much combinatory reasoning in
2 question-answering system can be short-circuited by
‘he use of special graphical and geometrical methods.

The domains considered —types, parts, colors, and
fimes—do not quite exhaust those in need of special
methods. In particular, part-of relationships are only one
“tructural aspect of physical (and other) systems, and
nore powerful modeling methods are needed to rapidly
‘fer static and dynamic relationships. For example, peo-
ole intuitively sense the “faulty physics’” in *‘He put a
~unch of roses in the wine glass,” perceiving with their
“mind’s eye’ that the roses won't stay put (whereas
-1olets might).
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A good deal has been written on whether imagelike
representations are psychologically real and theoretically
necessary, but that is not at issue here. What is at issue is
computational efficacy, and the methods of symbolic
logic, though no doubt capable in principle of predicting
the behavior of physical systems, need to be supple-
mented with special modeling methods to reach conclu-
sions within reasonable times. The various expert sys-
tems incorporating models of toy blocks, electronic cir-
cuits, weight-and-pulley assemblies, and so forth will
point the way, although the often complex and deform-
able objects of the real world (like plants, coats, and
people) may require methods different from those of the
popular microworlds. If sufficiently powerful analog
models can be developed for physical objects, they may
obviate the need for parts graphs, such as our P-graphs,
just as the color cylinder obviated the need for color
P-graphs.

We do not foresee having to devise many more special
representations other than improved models for struc-
tural reasoning, as long as we are concerned with general
question-answering and not with expert consultation
(e.g., on programming, mathematics, or economic fore-
casting). Indeed, even specialized expertise may often re-
quire no more than redeploying spatiotemporal model-
ing skills. For example, expertise in symbol manipulation
(as required for symbolic logic, mathematics, and pro-
gramming) may well rest in part on spatiotemporal vis-
ualization and in part on linguistic skills (parsing, pattern
matching), which are of course presupposed in a
question-answering system. ll

Acknowledgments

Meticulous refereeing has helped us to condense and
improve this article. The research reported was sup-
ported by operating grant A8818 of the Natural Sciences
and Engineering Research Council of Canada.

References

1. L. K. Schubert, R. Goebel, and N. Cercone, “‘The Struc-
ture and Organization of a Semantic Net for Comprehen-
sion and Inference,”” Associative Networks—The
Representation and Use of Knowledge by Computers, N.
V. Findler, ed., Academic Press, New York, 1979, pp.
121-175.

A. R. Covington and L. K. Schubert, “*Organization of
Modally Embedded Propositions and of Dependent Con-
cepts,’” Proc. Third Biennial Conf. CSCS1/SCEIO, 1980,
pp. 87-94.

1. S. E. Fahlman, A System for Representing and Using
Real-World Knowledge, MIT Press. Cambrnidge, Mass.,
1979; see also the summary in AL An MIT Perspective,
Vol. 1, P. H. Winston and R. H. Brown, eds., MIT Press,
Cambridge, Mass., pp. 453-470.

4. A. Bundy, L. Byrd, and C. Mellish, “'Special-Purpose,
But Domain-Independent, Inference Mechanisms,'” Proc.
1982 European Conf. Al, Orsay, France, pp. 67-74.

5. A.V.Aho, ] E. Hopcroft, and J. D. Ullman, Dara Struc-
tures and Algorithms, Addison-Wesley, Reading, Mass.,
1983.

(]

6. L.K.Schubert, “‘Problems with Parts,”” Proc. Sixth Int'l
Joint Conf. Al, Tokyo, 1979, pp. 778-784.

7. M. A. Papalaskaris and L. K. Schubert, **Parts Inference:
Closed and Semi-closed Partitioning Graphs,” Proc.
Seventh Int'l Joint Conf. Al, 1981, pp. 304-309.

8. M. A. Papalaskaris, ‘‘Special-Purpose Inference
Methods,” masters thesis, Dept. of Computing Science,
University of Alberta, Edmonton, 1982.

9. D. Judd and G. Wyszecki, Color in Business, Science and
Industry. 2nd ed., John Wiley & Sons, New York, 1963.

10. Ostwald. The Color Primer; Munsel. A Grammar of Col-
or, F. Birren, ed., Van Nostrand Reinhold, New York,
1969.

i1. M. A. Papalaskaris and L. K. Schubert, “*Inference, In-
compatible Predicates and Colours,”” Proc. Fourth Bien-
nial Conf. CSCSI/SCEIO, 1982, pp. 97-102.

12. K. Kahn and G. A. Gorry, Mechanizing Temporal
Knowledge,” Artificial Intelligence. Vol. 9, 1977, pp.
87-108.

13. T. Kameda, ‘On the Vector Representation of the
Reachability in Planar Directed Graphs,”’ Information
Processing Letters 3, 1975, pp. 75-77.

Lenhart K. Schubert is an associate pro-
fessor of computing science at the Univer-
sity of Alberta, Edmonton, with research
interests in various aspects of artificial in-
telligence, especially knowledge represen-
tation and natural-language understand-
ing. He received a PhD in aerospace
studies from the University of Toronto in
* 1970 and conducted postdoctoral studies
- at The Johns Hopkins University in Balti-
more and at the University of Alberta under a National
Research Council of Canada postdoctoral fellowship. Schubert
is a member of the ACM, the Association for Computational
Linguistics, the Cognitive Science Society, the Canadian Society
for Computational Studies of Intelligence, and the American
Association for Artificial Intelligence. He is a former Alexander
von Humboldt research fellow.

Mary Angela Papalaskaris is a doctoral
student in the Department of Artificial In-
telligence at the University of Edinburgh.
Her research interests center around
formal methods in artificial intelligence,
particularly automated reasoning. She
received a BSc in computer science from
Lakehead University, Thunder Bay,
Ontario, in 1979 and an MSc in computing
science from the University of Alberta,
Edmonton Alberta, in 1982, Papalaskaris is a member of the

ACM.

Jay Taugher is a graduate student at the
University of Alberta, Edmonton, where
he is pursuing an MSc in computing sci-
ence. His research focuses on knowledge
representation in general and temporal
knowledge in particular. A former em-
ployee of Burroughs Corporation, his pre-
vious work involved relational database
systems and secure operating systems,

: Taugher received a BSc in computing
science from Queen's University, Kingston, Ontario, in 1981,
and is a member of the ACM.

The authors' address is University of Alberta, Edmonton,
Alberta, Canada.

COMPUTER




