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Abstract: In their framework for ontological analysis, Guarino and Welty provide a number

of insights that are useful for guiding the design of taxonomic hierarchies. However, the formal
statements of these insights as logical schemata are flawed in a number of ways, including

inconsistent notation that makes the intended semantics of the logic unclear, false claims
of logical consequence, and definitions that provably result in the triviality of some of their

property features. This paper makes a negative contribution, by demonstrating these flaws in

a rigorous way, but also makes a positive contribution wherever possible, by identifying the
underlying intuitions that the faulty definitions were intended to capture, and attempting to

formalize those intuitions in a more accurate way.

Categories & Descriptors: I.2.4 [Knowledge Representation Formalisms and Methods]: Predicate logic
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1. Introduction
In a frequently-cited series of papers [2; 3; 4], Guarino and Welty have developed a
system for describing and classifying properties, in support of a principled method-
ology for building ontologies. They define a number of meta-properties that can be
used to classify properties, and they state constraints on which kinds of properties may
subsume which other kinds in an ontology. For example, one of the meta-properties
is rigidity: a property is rigid if every instance of that property has the property nec-
essarily, and a property is anti-rigid if no instance of the property has the property
necessarily. The notion of rigidity is brought to bear on the task of building ontologies
by the constraint that an anti-rigid property can’t subsume a rigid one.

It is clear that many of the ontologies available today were not constructed with pre-
cise definitions of taxonomic relations in mind, and the resulting confusion both limits
the ontologies’ practical usefulness in computational systems, and makes them hard
for humans to understand and compare. Guarino and Welty’s aim is to improve the
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quality of ontologies by bringing more discipline to the process of constructing them.
At first glance, the work may seem to be a step in this direction, because the meta-
properties and constraints are presented in the language of mathematical logic, a tool
perfectly suited for bringing discipline to the solution of a problem. Unfortunately, a
closer look reveals that this tool has not been put to its proper use. The logical formulas
and schemata are merely attempts to express certain intuitions symbolically, and have
not been subjected to the formal interpretation and validation that logic allows. We
will see that, in fact, the mathematical framework is flawed in a number of important
ways.

The value of Guarino and Welty’s underlying intuitions as guides for the construc-
tion of ontologies is not at issue in this paper. The problem is that, superficial appear-
ances of formality notwithstanding, these intuitions have not yet been fully developed
into precise definitions. Given that the very purpose of their work is to bring rigor to
a process formerly guided by insufficiently precise intuitions, it is crucial for the suc-
cess of that work that their own intuitions be developed into a fully precise and correct
logical theory.

This paper will point out a number of flaws in Guarino and Welty’s logical system.
While each of these flaws will be demonstrated by a rigorous argument, the emphasis
will be not on technical details (indeed, all of the proofs are quite simple and straight-
forward), but rather on the ways in which the their logical framework fails to capture
the intended concepts and intuitions, and therefore cannot serve the purpose for which
it was intended. Where possible, revisions that bring the logical framework in line
with intuition are suggested.

2. Rigidity
In [3], rigidity and the associated concepts of non-rigidity and anti-rigidity are defined
as follows:

—A rigid property is a property that is essential toall its instances,i.e. a propertyφ
such that:∀xφ(x) → 2φ(x) [3, Definition 1].1

—A non-rigid propertyis a property that is not essential tosomeof its instances,i.e.
∃xφ(x) ∧ ¬2φ(x) [3, Definition 2].

—An anti-rigid property is a property that is not essential toall its instances,i.e.
∀xφ(x) → ¬2φ(x) [3, Definition 3].

Incidentally, note that the schema for anti-rigidity is somewhat misleading: it is
logically equivalent to the simpler schema∀x¬2φ(x). Stating it in the form of a
conditional would seem on the surface to imply that the consequent could be false if
the antecedent were false, but that is not the case.

These definitions bear comment because they differ from the standard use of the
word ‘rigid’ in the modal logic literature. Ordinarily, the word is used to describe a
term, and means that the term denotes the same individual in all possible worlds. The

1 Rigidity is a second-order property: it is something that is predicated of properties. Following Guarino and
Welty, in this paper we will deal with second-order notions in the manner seen above: the first-order part of
the definition is stated in first-order logic, and the second-order quantification is expressed in English. For a
more rigorous treatment of the meta-properties, a higher-order logic would be useful.



straightforward extension of this concept to predicates would be that a predicate is
rigid if it denotes the same set in all possible worlds. This is expressed by the schema

∀x3φ(x) → 2φ(x).

Guarino and Welty’s definition is weaker,i.e. more inclusive, than the standard one.
This deviation from standard (and more intuitive) terminology may simply be an over-
sight, since none of Guarino and Welty’s results seem to depend on it. The definition
of non-rigidity is dependent on that of rigidity; if we replace Guarino and Welty’s defi-
nition of rigidity with the one given above, then the analogous schema for non-rigidity
is∃x3φ(x)∧¬2φ(x). The schema∀x¬2φ(x) still describes anti-rigidity, regardless
of which definition of rigidity is used.

Guarino and Welty state that ifφ is anti-rigid andψ is rigid thenφ can’t subsumeψ
[3, formula 6], where “φ subsumesψ” is defined as∀xψ(x) → φ(x) [3, formula 1].
They claim that this follows directly from the definitions of rigidity and anti-rigidity.
This claim is simply false, as is demonstrated by the following model construction.

THEOREM 1. It is possible for an anti-rigid property to subsume a rigid one, given
Guarino and Welty’s definitions of rigid, anti-rigid, and subsumption.

PROOF. LetM be a model with two worlds,w1 andw2, and one individuali. Let
the denotation ofφ be{i} in w1 and the empty set inw2, and let the denotation ofψ
be{i} in bothw1 andw2. In this model, designatingw1 as the actual world,

—φ is anti-rigid: for every individual (namelyi) of which φ is true inw1, there is a
world (namelyw2) in whichφ is false of that individual;

—ψ is rigid: for every individual (namelyi) of whichψ is true inw1, ψ is true of that
individual in all possible worlds;

—φ subsumesψ: for every individual (namelyi) of whichφ is true inw1, ψ is true in
w1.

All three conditions also hold if Guarino and Welty’s definition of rigidity is re-
placed with the standard one, so Theorem 1 has the following corollary:

THEOREM 2. It is possible for an anti-rigid property to subsume a rigid one, given
Guarino and Welty’s definition of subsumption and anti-rigidity, and defining rigidity
to mean denoting the same thing in all possible worlds.

The proposed constraint is still false even under the constraint that all properties be
“discriminating,” i.e. non-trivial, according to the definition given in [1]:

P is a discriminating property if3∃xP (x) ∧3∃x¬P (x).

THEOREM 3. It is possible for an anti-rigid, discriminating property to subsume
a rigid, discriminating property, given Guarino and Welty’s definitions of rigid, anti-
rigid, discriminating, and subsumption.

PROOF. Begin with the model constructed in the proof of Theorem 1; add a second
individual j to the domain, but don’t add it to the denotation of either predicate. then
bothφ andψ are discriminating,φ is still anti-rigid,ψ is still rigid, andφ still subsumes
ψ.



Guarino and Welty apparently have the intuition that an anti-rigid property can’t
subsume a rigid one. Since this is actually false under the definitions they give for
“rigid,” “anti-rigid,” and “subsumes,” it makes sense to ask whether these definitions
fail to reflect their intuitions in some way. In fact, there is a plausible explanation: if
“φ subsumesψ” is redefined as2∀xψ(x) → φ(x), then it is true that an anti-rigid
property can’t subsume a rigid one:

THEOREM 4. An anti-rigid property can’t subsume a rigid one necessarily, given
either definition of rigid.

The proof of this theorem is trivial.
It seems, therefore, that this stronger definition of subsumption may have been what

Guarino and Welty had in mind. It is not an unreasonable definition, but it is different
from the one they have stated, in a way that has consequences for the construction of
ontologies.

3. Necessity, Existence, and Time
As we have seen, the meta-property of rigidity is described in [3] using a modal logic.
The subsequent sections on identity and unity don’t make use of modal operators, but
do use a temporal logic, in which each time-varying predicate has an extra temporal
argument (e.g.P (a, t) indicates thatP holds ofa at timet). A predicate ofactual
existenceis also introduced. Among Guarino and Welty’s papers to date, explication
of the semantics of the existence predicate is limited to the following passage in [4]:

Our domain of quantification will be that ofpossibilia. That is, the exten-
sion of predicates will not be limited to what exists in the actual world, but
to what exists in any possible world (Lewis, 1983). . . . Actual existence
is therefore different from existential quantification (“logical existence”),
and will be represented by the temporally indexed predicateE(x, t), mean-
ing thatx has actual existence at timet (Hirst, 1991).

where the Lewis reference is to [8], and the Hirst reference is to [6].
The mention of “what exists in the actual world” and “what exists in any possible

world” in the explication of the time-indexed existence predicate would seem to indi-
cate that the second argument of the existence predicate ranges over possible worlds,
rather than times; and likewise, Guarino and Welty frequently (though not consis-
tently) use terms like “essential” and “rigid” as if they involved quantification over
time, rather than across worlds. For example, in [2, Section 4.2], “essential unity” is
defined as something that holds of an individual if it is a contingent whole at every
time where it exists; in [3, Section 5], the system asks the user: “Rigidity check: If an
instance of animal ceases to be an instance of animal, does it cease to be an instance
of physical-object?”; and in [3, Section 3.1], it is stated that the propertySTUDENTis
not rigid because one can be a student for a time and then cease to be one.

There are precedents for equating times with possible worlds in Prior’s temporal
logic [10] and in Guarino’s earlier work with Carrara and Giaretta [1]; the cited paper
by Hirst also uses phrases like “the present real world” and “a past world.” However,
this reading is problematic for Guarino and Welty’s logic because of the mixture of
modal operators and explicit time arguments. In the existing literature, there are two



disjoint kinds of possible worlds logics: those with modal operators (which are inter-
preted as expressing implicit quantification over possible worlds), and those in which
possible worlds are in the domain of quantification and can be referred to explicitly.
Some logics of the first kind,e.g. that of Kripke [7], allow the definition of an exis-
tence predicate (via the axiomE(x) ↔ x = x), but that predicate has no time/world
index (since times/worlds are not denoted by terms of the logic). If we are to read [3]
as presenting a single, unified theory, then we need to resolve how the modal operators
and time arguments are related semantically.

The only natural way to interpret a logic that has both modal operators and explicit
temporal arguments is to interpret the modal operators according to possible worlds
semantics, take the existence predicate to be an ordinary predicate, and take the time
arguments to be ordinary terms that range over the domain of quantification (which
does not include possible worlds). Then worlds and times would be orthogonal—a
proposition could be true in a world at one time, false in that world at another time,
and false in another world at the same time. But as we have seen, this appears not to
be Guarino and Welty’s intention—they don’t differentiate between times and worlds.
Our only recourse seems to be to read the modal operators as quantifying implicitly
over times, which are also in the domain of the quantifiers∃ and∀. This is an entirely
non-standard interpretation, so if it is what was intended, it needs to be stated explicitly.

While this seems to be the interpretation that brings the series of papers closest to
consistency, it still leaves some questions. For example, a rigid property is defined as
one for which

∀xφ(x) → 2φ(x).

If we interpret2φ(x) as meaning∀t φ(x, t), then how should we translate the an-
tecedent of the conditional? Ordinary modal logic uses a notion of the “current world,”
but Guarino and Welty have not introduced the analogous “current time” in their hy-
brid modal/temporal logic. In an as yet unpublished paper [5], rigidity is redefined
as

φ(x, t) → 2∀t′ φ(x, t′).

This definition is similarly in conflict with a reading of the modal operator as quanti-
fying implicitly over times, since it uses explicit quantification over times within the
scope of a modal operator.

We are forced to conclude that Guarino and Welty’s temporal and modal “logic”
simply has no consistent semantics. We have pointed out various ways in which the
logic could be interpreted, but each of these choices requires the modification of some
part of their framework.

4. Identity
The concept of anidentity criterion is introduced in [3, Section 3.2] by giving the
formulation of [9]:ρ is an identity criterion forφ if it is a relation of a suitable type (a
qualification about which we will have more to say later) such that

φ(x) ∧ φ(y) → (ρ(x, y) ↔ x = y). (1)

Then, with the comment that “finding aρ that is both necessaryand sufficient for
identity is often hard,” and introducing time arguments and the existence predicate



in order to differentiate between synchronic and diachronic identity, the notion of an
identity criterion is separated into necessary and sufficient identity conditions: formula
Γ is a necessary identity condition forφ (also phrased as “φ carries identity condition
Γ”) if

E(x, t) ∧ φ(x, t) ∧ E(y, t′) ∧ φ(y, t′) ∧ x = y → Γ(x, y, t, t′) (2)

and is a sufficient identity condition if

E(x, t) ∧ φ(x, t) ∧ E(y, t′) ∧ φ(y, t′) ∧ Γ(x, y, t, t′) → x = y (3)

These definitions are stated in [3] with the qualification “excluding trivial cases.” In
[4], the qualification is specified in logical form: both necessary and sufficient condi-
tions are constrained by

¬∀xy Γ(x, y, t, t′) ↔ x = y (4)

and necessary conditions are subject to the constraint

¬∀xy E(x, t) ∧ φ(x, t) ∧ E(y, t′) ∧ φ(y, t′) → Γ(x, y, t, t′) (5)

while sufficient conditions are subject to the constraint

∃xytt′ Γ(x, y, t, t′) (6)

If a propertyφ has some (necessary or sufficient) identity condition, Guarino and
Welty writeφI+; if it has no identity condition, they writeφI−. Properties classified
+I are called “sortals,” following Strawson [11].

We will now show that the features+/-I do not, in fact, make a useful discrimination
between different kinds of properties. Having done so, we will examine the intuitions
that were apparently behind Guarino and Welty’s definitions, and propose an alternate
formulation that more correctly expresses these intuitions.

4.1 Failure of the Non-Triviality Constraints

The +/-I classification is meaningless given the definitions Guarino and Welty use,
because under these definitions the only properties thatdon’t have identity conditions
are ones that belong to a particular class of trivial properties, as we will now see. First,
consider the situation if we omitted the non-triviality constraints from the definitions
of identity conditions:

THEOREM 5. If constraints (4), (5), and (6) are omitted from the definitions of
necessary and sufficient identity conditions, then there is an identity condition that
every property carries.

PROOF. If the non-triviality constraints are left out of the definition, then the iden-
tity relation itself is a necessary and sufficient identity condition for every property:
substitutingx = y for Γ(x, y, t, t′) in (2) and (3) results in a tautology, regardless of
what propertyφ is.

Similarly, if we consider merely necessary or merely sufficient conditions, any tau-
tologically true formula would be a necessary identity condition, and any tautologically
false formula would be a sufficient identity condition, for allφ. Guarino and Welty ap-
pear to have noticed these problems, because they have added constraints (4), (5), and



(6) to disallow these trivial conditions explicitly. (5) also rules out the slightly less
trivial formulaE(x, t)∧φ(x, t)∧E(y, t′)∧φ(y, t′) as a necessary identity condition.
They apparently judged, quite justifiably, that these trivial formulae are not useful or
informative identity conditions; but ruling out these specific relations was the wrong
solution. These aren’t the only trivial or uninformative identity conditions, they are
simply three of the most natural ones. There are an infinity of other equally uninter-
esting identity criteria that the purported non-triviality constraints don’t rule out. The
following theorem gives one example.

THEOREM 6. There is a sufficient identity condition that is carried by every prop-
erty that has two or more instances.

PROOF. Consider the formulax = y∧x 6= c, for some arbitrarily chosenc. Substi-
tuting this formula forΓ(x, y, t, t′) makes (3) and (4) tautologies. It doesn’t make (6) a
tautology, but it makes it true in every model that satisfies∃xx 6= c, i.e. models whose
domain of interpretation contains two or more elements. Therefore,x = y ∧ x 6= c is
a sufficient identity condition for every property that holds of at least two things.

The constructed identity condition could be modified to yield a condition carried
by even more properties, and similar constructions can be invented to circumvent the
ad hocconstraints placed on necessary identity conditions; but even without going
through such an exercise, we have already demonstrated that only a very limited class
of properties are to be labeled-I according to Guarino and Welty’s definitions, and
therefore the meta-property+/-I cannot play the major role they intend for it in struc-
turing taxonomies.

It should be clear by now that the difference between interesting and non-interesting
identity conditions is not to be found in their logical properties. The statement “two
lumps of clay are identical if they have the same parts” is more informative than “two
lumps of clay are identical if they are identical” because the former reduces the ques-
tion of identity to a different question about which we might have clearer intuitions.
“Two lumps of clay are identical if they are identical” also happens to be tautological,
but that is not the relevant problem.

4.2 Identity and Subsumption

Constraint (7) in [3] states that ifφ carries some identity condition andψ carries no
identity condition, thenφ can’t subsumeψ. Given what we have just seen, this is
not a useful constraint for structuring taxonomies of non-trivial properties. However,
this is not to say that the notion of identity conditions has nothing to contribute to
understanding taxonomic structure. Constraint (11) of [3] says that “properties with
incompatible identity conditions are disjoint.” This constraint refers to the specific
identity conditions that a property carries, rather than simply to the question of whether
or not it carries any, and therefore escapes triviality. As we will now see, the constraint
is ill-defined, but it is on the right track.

In [2], Guarino and Welty take the following quote from Lowe [9] as a starting point:

No individual can instantiate both of two sorts if they have different criteria
of identity associated with them.

It is then pointed out that Lowe’s principle is insufficiently precise: “having the same
edges and the same angles” is an identity criterion for polygons (including triangles),



while “having two edges and their internal angle in common” is an identity criterion
for triangles but not for polygons. The class of polygons and that of triangles carry
different identity conditions, but they are not disjoint; in fact, the former subsumes the
latter.

This point is well taken. Guarino and Welty’s alternative principle is that if two
properties have “incompatible” identity conditions, then they are disjoint. Unfortu-
nately, the term “incompatible” is not defined, and the example given sheds no light
on what it is intended to mean. The example is that the classes “amount of matter” and
“person” must be disjoint because replacing some of the parts of an amount of mat-
ter makes it a different amount of matter, while a person can remain the same person
while some of his parts are replaced (the identity condition being implicitly referred
to is presumably the binary relation “are composed of the same parts”). But in the
relevant aspects, this example is no different from the polygon/triangle example: it
is simply another instance of one class carrying an identity condition that the other
doesn’t. Perhaps an apparent difference is that polygon and triangle, in addition to the
identity condition on which they differ, also share an identity condition. But for the
amount of matter/person example to be used as a contrast to this, it would have to be
demonstrated that there is no identity condition that the two properties share. Guarino
and Welty do not show this, and indeed it is difficult to imagine how it could be shown.

Although there doesn’t appear to be a useful interpretation of the+/-I notation, there
is a constraint on taxonomic relationships that can be stated in terms of identity criteria,
and even merely necessary or merely sufficient identity conditions. Quite simply,

THEOREM 7. If φ carries identity conditionΓ, andφ subsumesψ, thenψ carries
Γ as well; or, stated another way, ifφ carries identity conditionΓ andψ does not, then
φ does not subsumeψ.

The proof is trivial. Note that this constraint generates the correct results for both
of the above examples. Triangle carries an identity condition that polygon does not,
so triangle doesn’t subsume polygon; in the other direction, the example doesn’t men-
tion any identity condition that polygon carries but triangle does not, so the constraint
doesn’t apply. Likewise, “amount of matter” carries an identity condition that “person”
does not, so “amount of matter” doesn’t subsume “person.”

5. Unity
WhereP (x, y, t) means thatx is a part ofy at timet (the predicateP is constrained
axiomatically), an objectx is said to be acontingent wholeunder theunifying relation
ω at timet if

∀y (P (y, x, t) → ∀z (P (z, x, t) ↔ ω(z, y, t))) [2, formula (16)] (7)

¬∀xyzt P (y, x, t) ∧ P (z, x, t) ↔ ω(y, z, t) [2, formula (17)]2. (8)

(7) gives the core meaning of the term “unifying relation:” it says thatω is a unifying
relation forx if all of the parts ofx are related to each other by the relationω.

2[2, formula (17)] contained a typographical error. The formula presented here is the intended axiom, as
confirmed by Guarino in personal communication.



(8) is said to be a non-triviality condition, which immediately raises suspicions given
the problems with the so-called non-triviality conditions for identity discussed in Sec-
tion 4.1. In fact, the problems with this formula are manifold: there are problems both
with the concept underlying the constraint, and with the attempt to express that concept
in logical form.

From the text that follows the formulas, it seems that the intended constraint is that
there must be some values ofx andt for which (7) doesn’t hold,i.e. thatω must not
be the universal unifying relation. First of all, this constraint is just asad hoc, and
therefore just as ineffective, as those discussed in Section 4 above. It rules out a single
undesirable relation (the universal unifying relation) while allowing an infinity of other
undesirable relations that are just minor modifications of it.

Furthermore, (8) doesn’t even express the apparently intended constraint. If the
intention is indeed that there are somex andt for which (7) doesn’t hold, the logical
expression of that condition would be

¬∀xyt (P (y, x, t) → ∀z (P (z, x, t) ↔ ω(z, y, t))), (9)

which is not logically equivalent to (8).
The notion ofintrinsic wholeis defined as follows:

An objectx is anintrinsic whole underω if, at any time wherex exists, it
is a contingent whole underω [2, Definition 6].

This definition is not stated in logical form, but since (7) gives the logical definition of
a contingent whole, the logical definition of “x is an intrinsic whole underω” must be

∀t E(x, t) → ∀y (P (y, x, t) → ∀z (P (z, x, t) ↔ ω(z, y, t))).

Simplifying, and using the axiomP (x, y, t) → E(x, t)∧E(y, t) given in [2, Table 1],
this definition reduces to

∀tyz P (y, x, t) → (P (z, x, t) ↔ ω(z, y, t)). (10)

Next, the meta-property ofcarrying a unity conditionis defined:

A propertyφ carries a unity conditionif there is a relationω such that
instances ofφ are intrinsic wholes underω [2, Definition 7].

The fact that propertyφ carries a unity condition is expressed with the notationφ+U .
Building on (10), the logical form of this definition is thatφ carries a unity condition
if there is a relationω such that

∀xtyz φ(x, t) ∧ P (y, x, t) → (P (z, x, t) ↔ ω(z, y, t)). (11)

We will now see that, like the+/-I distinction, the+/-U distinction is not as useful a
tool for structuring taxonomies as Guarino and Welty intended it to be. In particular,
they claim that the properties whose instances are countable are those that are both+I
and+U [2, Section 5]; since we have already shown that only trivial properties are not
+I , the claim reduces to the claim that the meta-property+/-U is what differentiates
between countable and uncountable properties. This is not the case, as we will now
see.

Let us defineproperly overlapping partsas follows: two entitiesA andB have
properly overlapping parts if there is something which is a part of bothA andB, and



there is something else which is a part ofA but notB, or vice versa. Theorem 8 below
states that the properties that carry unity conditions are merely those whose instances
can have properly overlapping parts. ‘Committee’ is an example of a property whose
instances can have properly overlapping parts: it is possible for committeeA to consist
of personsa andb, and committeeB to consist of personsa andd. Persona is on both
committees, butb andd are on only one committee each.

THEOREM 8. Propertyφ carries a unity condition if and only if for any two in-
stancesA andB of φ, either no part ofA is part ofB and vice versa, or every part of
A is part ofB and vice versa.

PROOF. We will show first the “only if” direction, and then the “if” direction.
Assume, for the purpose of deriving a contradiction, thatφ carries unity condition

ω, as defined by (11), and that the following assertions are true:φ(A, t1), φ(B, t1),
P (a,A, t1), P (a,B, t1), P (b, A, t1), ¬P (b, B, t1). By instantiating (11) withA for
x, t1 for t, a for y, andb for z, it follows thatω(b, a, t1) is true. Then, instantiating
it again as before except withB for x, it follows thatP (b, B, t1), contradicting our
initial assumptions.

For the “if” direction, consider the unifying relation defined by

∀zyt ω(z, y, t) ↔ ∃xφ(x, t) ∧ P (z, x, t) ∧ P (y, x, t)). (12)

Substituting the right-hand side of this definition forω(z, y, t) in (11) results in

∀xtyz φ(x, t) ∧ P (y, x, t) → (P (z, x, t) ↔ ∃xφ(x, t) ∧ P (z, x, t) ∧ P (y, x, t))

which is equivalent to the conjunction of

∀xtyz φ(x, t) ∧ P (y, x, t) ∧ P (z, x, t) → ∃xφ(x, t) ∧ P (z, x, t) ∧ P (y, x, t),

which is a tautology, and

∀xtyz φ(x, t) ∧ P (y, x, t) ∧ ∃xφ(x, t) ∧ P (z, x, t) ∧ P (y, x, t) → P (z, x, t).

The latter is not a tautology, but it does follow from

∀xyzwtP (y, x, t) ∧ P (z, w, t) ∧ P (y, w, t) → P (z, x, t)

which is precisely the constraint that if two wholes share any parts, then they share all
of their parts.

In other words, the distinction+/-U differentiates between properties whose in-
stances can have properly overlapping parts, and those that don’t. As the ‘committee’
example shows, there is no justification for identifying the countable properties with
those that carry unity conditions (the property is countable, but doesn’t carry a unity
condition).

In [4], Guarino and Welty also define a label∼U, for anti-unity, as follows: a prop-
erty has anti-unity if every instance of the property is not an intrinsic whole. We will
show that this class is in fact empty: for every object,i.e. every instance of every prop-
erty, there is a relation under which the individual is an intrinsic whole. While this
relation is not always non-trivial according to constraint (8) or its amended version
(9), we will show that one innocuous stipulation guarantees its non-triviality.



THEOREM 9. For every objecta, i.e. every instance of every property, there is
a relation under which the individual is an intrinsic whole. Under the stipulation
∃xt¬P (x, a, t), i.e. the stipulation that there is something that is not always part of
a, that relation satisfies (8) and (9).

PROOF. Any objecta is an intrinsic whole under the relationω defined by

∀yzt ω(y, z, t) ↔ P (y, a, t) ∧ P (z, a, t).

Substituting the right-hand side of this biconditional forω(y, z, t) in (8) yields

¬∀xyzt (P (y, x, t) ∧ P (z, x, t)) ↔ (P (y, a, t) ∧ P (z, a, t)),

which is a logical consequence of∃xt¬P (x, a, t). In other words, the relationω is
non-trivial whenever∃xt¬P (x, a, t) holds. A parallel argument leads to the same
result for the amended non-triviality condition (9).

As with identity conditions, the true usefulness of unity conditions in constraining
taxonomic relations lies not in determining which properties carry unity conditions
and which don’t (if we accept Guarino and Welty’s definition of “carries a unity condi-
tion”), but in choosing particular interesting unity conditions, and determining which
properties carrythem. Like identity conditions, unity conditions are inherited from
subsuming properties, so ifφ carries unity conditionω andψ doesn’t, thenφ does not
subsumeψ.

6. Conclusions
Guarino and Welty’s work on formalizing taxonomic constraints is based on some
useful intuitions, but the mathematical execution is flawed. This paper is an attempt to
repair a number of problems. The major results can be summarized as follows.

(1) Guarino and Welty’s notation and associated descriptions indicate a confusion
between between modal logic on the one hand, and temporal logic with explicit tem-
poral arguments on the other, with the result that their formulae are uninterpretable by
any standard semantics. The way to alleviate this confusion with the least disturbance
to their framework would seem to be to replace all modal operators with explicit quan-
tification over times, and to state explicitly that terms like “necessary,” “rigid,” and
“essential” are related to persistence over time, rather than across worlds.

(2) The claim that an anti-rigid property can’t subsume a rigid one is false. Incorrect
intuitions about this issue probably indicate a confusion between subsumption and
necessary subsumption, since it is true that an anti-rigid property can’t subsume a rigid
onenecessarily.

(3) The meta-properties+/-I and+/-/∼U, indicating whether or not a property car-
ries identity or unity conditions, turn out to be useless for constraining taxonomic
relationships, as they are defined by Guarino and Welty. However, the property of
carrying aparticular identity or unity condition does place useful constraints on taxo-
nomic relations between properties.
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