
Contents

12 Concurrency 1
12.1 Background and Motivation . 2

12.1.1 A Little History . 2
12.1.2 The Case for Multi-Threaded Programs 4
12.1.3 Multiprocessor Architecture . 8

12.2 Concurrent Programming Fundamentals . 11
12.2.1 Communication and Synchronization 12
12.2.2 Languages and Libraries . 13
12.2.3 Thread Creation Syntax . 14
12.2.4 Implementation of Threads . 22

12.3 Shared Memory . 26
12.3.1 Busy-Wait Synchronization . 27
12.3.2 Scheduler Implementation . 30
12.3.3 Scheduler-Based Synchronization . 33
12.3.4 Implicit Synchronization . 41

12.4 Message Passing . 43
12.4.1 Naming Communication Partners . 43
12.4.2 Sending . 47
12.4.3 Receiving . 50
12.4.4 Remote Procedure Call . 56

Summary and Concluding Remarks . 58
Review Questions . 60
Exercises . 61
Bibliographic Notes . 66

From Programming Language Pragmatics, by Michael L. Scott. Copyright c© 2000, Morgan Kaufmann
Publishers; all rights reserved. This material may not be copied or distributed without permission of the
publisher.

i

Chapter 12

Concurrency

The bulk of this text has focused, implicitly, on sequential programs—programs with a
single active execution context. As we saw in chapter 6, sequentiality is fundamental to
imperative programming. It also tends to be implicit in declarative programming, partly
because practical functional and logic languages usually include some imperative features,
and partly because people tend to develop imperative implementations and mental models
of declarative programs (applicative order reduction, backward chaining with backtracking),
even when language semantics do not require such a model.

By contrast, a program is said to be concurrent if it contains more than one active
execution context—more than one “thread of control”. Concurrency arises for at least
three important reasons:

To capture the logical structure of a problem. Many programs, particularly servers and
graphical applications, must keep track of more than one largely independent “task”
at the same time. Often the simplest and most logical way to structure such a program
is to represent each task with a separate thread of control. We touched on this “multi-
threaded” structure when discussing coroutines (section 8.6); we will return to it in
section 12.1.2.

To cope with independent physical devices. Some software is by necessity concurrent.
An operating system may be interrupted by a device at almost any time. It needs
one context to represent what it was doing before the interrupt, and another for the
interrupt itself. Likewise a system for real-time control (e.g. of a factory, or even an
automobile) is likely to include a large number of processors, each connected to a
separate machine or device. Each processor has its own thread(s) of control, which
must interact with the threads on other processors to accomplish the overall objectives
of the system. Message-routing software for the Internet is in some sense a very large
concurrent program, running on thousands of servers around the world.

To increase performance by running on more than one processor at once. Even when
concurrency is not dictated by the structure of a program or the hardware on which
it has to run, we can often increase performance by choosing to have more than
one processor work on the problem simultaneously. On a large multiprocessor, the
resulting parallel speedup can be very large.

1

2 CHAPTER 12. CONCURRENCY

Section 12.1 contains a brief overview of the history of concurrent programming. It
highlights major advances in parallel hardware and applications, makes the case for multi-
threaded programs (even on uniprocessors), and surveys the architectural features of mod-
ern multiprocessors. In section 12.2 we survey the many ways in which parallelism may
be expressed in an application. We introduce the message-passing and shared-memory ap-
proaches to communication and synchronization, and note that they can be implemented
either in an explicitly concurrent programming language or in a library package intended
for use with a conventional sequential language. Building on coroutines, we explain how a
language or library can create and schedule threads. In the two remaining sections (12.3
and 12.4) we look at shared memory and message passing in detail. Most of the shared-
memory section is devoted to synchronization.

12.1 Background and Motivation

Concurrency is not a new idea. Much of the theoretical groundwork for concurrent pro-
gramming was laid in the 1960’s, and Algol 68 includes concurrent programming features.
Widespread interest in concurrency is a relatively recent phenomenon however; it stems in
part from the availability of low-cost multiprocessors and in part from the proliferation of
graphical, multimedia, and web-based applications, all of which are naturally represented
by concurrent threads of control.

Concurrency is an issue at many levels of a typical computer system. At the digi-
tal logic level, almost everything happens in parallel—signals propagate down thousands
of connections at once. At the next level up, the pipelining and superscalar features of
modern processors are designed to exploit the instruction-level parallelism available in well-
scheduled programs. In this chapter we will focus on medium to large scale concurrency,
represented by constructs that are semantically visible to the programmer, and that can
be exploited by machines with many processors. In sections 12.1.3 and 12.3.4 we will also
mention an intermediate level of parallelism available on special-purpose vector processors.

12.1.1 A Little History

The very first computers were single-user machines, used in stand-alone mode: people
signed up for blocks of time, during which they enjoyed exclusive use of the hardware.
Unfortunately, while single-user machines make good economic sense today, they constituted
a terrible waste of resources in the late 1940’s, when the cheapest computer cost millions
of dollars. Rather than allow a machine to sit idle while the user examined output or
pondered the source of a bug, computer centers quickly switched to a mode of operation in
which users created jobs (sequences of programs and their input) off-line (e.g. on a keypunch
machine) and then submitted them to an operator for execution. The operator would keep
a batch of jobs constantly queued up for input on punch cards or magnetic tape. As its
final operation, each program would transfer control back to a resident monitor program—a
form of primitive operating system—which would immediately read the next program into
memory for execution, from the current job or the next one, without operator intervention.

Unfortunately, this simple form of batch processing still left the processor idle much of
the time, particularly on commercial applications, which tended to read a large number
of data records from cards or tape, with comparatively little computation per record. To

12.1. BACKGROUND AND MOTIVATION 3

head

main program:
 read head
 A->next := head

handler:
 read head
 B->next := head
 head := B

 head := A

head

A

A

B

C D

head C D

C D

head A

B C D

Figure 12.1: Example of a race condition. Here the currently running program attempts
to insert a new element into the beginning of a list. In the middle of this operation, an
interrupt occurs and the interrupt handler attempts to insert a different element into the
list. In the absence of synchronization, one of the elements may become lost (unreachable
from the head pointer).

perform an I/O operation (to write results to a printer or magnetic tape, or to read a new
program or input data into memory), the processor in a simple batch system would send a
command to the I/O device and then busy-wait for completion, repeatedly testing a variable
that the device would modify when done with its operation. Given a punch card device ca-
pable of reading four cards per second, a 40 kHz vacuum-tube computer would waste 10,000
instructions per card while waiting for input. If it performed fewer than 10,000 instructions
of computation on average before reading another card, the processor would be idle more
than half the time! To make use of the cycles lost to busy-waiting, researchers developed
techniques to overlap I/O and computation. In particular, they developed interrupt-driven
I/O, which eliminates the need to busy-wait, and multiprogramming, which allows more
than one application program to reside in memory at once. Both of these innovations re-
quired new hardware support: the former to implement interrupts, the latter to implement
memory protection, so that errors in one program could not corrupt the memory of another.

On a multiprogrammed batch system, the operating system keeps track of which pro-
grams are waiting for I/O to complete and which are currently runnable. To read or write
a record, the currently running program transfers control to the operating system. The OS
sends a command to the device to start the requested operation, and then transfers control
immediately to a different program (assuming one is runnable). When the device completes
its operation, it generates an interrupt, which causes the processor to transfer back into
the operating system. The OS notes that the earlier program is runnable again. It then
chooses a program from among those that are runnable and transfers back to it. The only
time the processor is idle is when all of the programs that have been loaded into memory
are waiting for I/O.

Interrupt-driven I/O introduced concurrency within the operating system. Because an
interrupt can happen at an arbitrary time, including when control is already in the operating

4 CHAPTER 12. CONCURRENCY

system, the interrupt handlers and the main bulk of the OS function as concurrent threads
of control. If an interrupt occurs while the OS is modifying a data structure (e.g. the list of
runnable programs) that may also be used by a handler, then it is possible for the handler to
see that data structure in an inconsistent state (see figure 12.1). This problem is an example
of a race condition: the thread that corresponds to the main body of the OS and the thread
that corresponds to the device are “racing” toward points in the code at which they touch
some common object, and the behavior of the system depends on which thread gets there
first. To ensure correct behavior, we must synchronize the actions of the threads—i.e. take
explicit steps to control the order in which their actions occur. We discuss synchronization
further in section 12.3. It should be noted that not all race conditions are bad: sometimes
any of the possible program outcomes is acceptable. The goal of synchronization is to
resolve “bad” race conditions—those that might otherwise cause the program to produce
incorrect results.

With increases in the size of physical memory, and with the development of virtual mem-
ory, it became possible to build systems with an almost arbitrary number of simultaneously
loaded programs. Instead of submitting jobs off-line, users could now sit at a terminal and
interact with the computer directly. To provide interactive response to keystrokes, however,
the OS needed to implement preemption. Whereas a batch system switches from one pro-
gram to another only when the first one blocks for I/O, a preemptive, timesharing system
switches several times per second as a matter of course. These context switches prevent
a compute-bound program from hogging the machine for seconds or minutes at a time,
denying access to users at keyboards.

By the early 1970’s, timesharing systems were relatively common. When augmented
with mechanisms to allow data sharing or other forms of communication among currently
runnable programs, they introduced concurrency in user-level applications. Shortly there-
after, the emergence of computer networks introduced true parallelism in the form of dis-
tributed systems—programs running on physically separate machines, and communicating
with messages.

Most distributed systems reflect our second rationale for concurrency: they have to
be concurrent in order to cope with multiple devices. A few reflect the third rationale:
they are distributed in order to exploit the speedup available from multiple processors.
Parallel speedup is more commonly pursued on single-chassis multiprocessors, with internal
networks designed for very high bandwidth communication. Though multiprocessors have
been around since the 1960’s, they did not become commonplace until the 1980’s.

12.1.2 The Case for Multi-Threaded Programs

Our first rationale for concurrency—to capture the logical structure of certain applications—
has arisen several times in earlier chapters. In section 7.9.1 we noted that interactive I/O
must often interrupt the execution of the current program. In a video game, for example,
we must handle keystrokes and mouse or joystick motions while continually updating the
image on the screen. By far the most convenient way to structure such a program is to
represent the input handlers as concurrent threads of control, which coexist with one or
more threads responsible for updating the screen. In section 8.6, we considered a screen
saver program that used coroutines to interleave “sanity checks” on the file system with

12.1. BACKGROUND AND MOTIVATION 5

updates to a moving picture on the screen. We also considered discrete-event simulation,
which uses coroutines to represent the active entities of some real-world system.

The semantics of discrete-event simulation require that events occur atomically at fixed
points in time. Coroutines provide a natural implementation, because they execute one
at a time. In our other examples, however—and indeed in most “naturally concurrent”
programs—there is no need for coroutine semantics. By assigning concurrent tasks to
threads instead of to coroutines, we acknowledge that those tasks can proceed in parallel
if more than one processor is available. We also move responsibility for figuring out which
thread should run when from the programmer to the language implementation.

The need for multi-threaded programs has become particularly apparent in recent years
with the development of web-based applications. In a browser such as Netscape Navigator or
Internet Explorer (see figure 12.2), there are typically many different threads simultaneously
active, each of which is likely to communicate with a remote (and possibly very slow) server
several times before completing its task. When the user clicks on a link, the browser creates
a thread to request the specified document. For all but the tiniest pages, this thread will
then receive a long series of message “packets”. As these packets begin to arrive the thread
must format them for presentation on the screen. The formatting task is akin to typesetting:
the thread must access fonts, assemble words, and break the words into lines. For many
special tags within the page, the formatting thread will spawn additional threads: one for
each image, one for the background if any, one to format each table, possibly more to
handle separate frames. Each spawned thread will communicate with the server to obtain
the information it needs (e.g. the contents of an image) for its particular task. The user,
meanwhile, can access items in menus to create new browser windows, edit bookmarks,
change preferences, etc., all in “parallel” with the rendering of page elements.

The use of many threads ensures that comparatively fast operations (e.g. display of text)
do not wait for slow operations (e.g. display of large images). Whenever one thread blocks
(waits for a message or I/O), the implementation automatically switches to a different
thread. In a preemptive thread package, the implementation switches among threads at
other times as well, to make sure than none of them hogs the CPU. Any reader who
remembers the early, more sequential browsers will appreciate the difference that multi-
threading makes in perceived performance and responsiveness.

Without language or library support for threads, a browser must either adopt a more se-
quential structure, or centralize the handling of all delay-inducing events in a single dispatch
loop (see figure 12.3).1 Data structures associated with the dispatch loop keep track of all
the tasks the browser has yet to complete. The state of a task may be quite complicated.
For the high-level task of rendering a page, the state must indicate which packets have been
received and which are still outstanding. It must also identify the various subtasks of the
page (images, tables, frames, etc.) so that we can find them all and reclaim their state if
the user clicks on a “stop” button.

To guarantee good interactive response, we must make sure that no subaction of continue
task takes very long to execute. Clearly we must end the current action whenever we wait
for a message. We must also end it whenever we read from a file, since disk operations are
slow. Finally, if any task needs to compute for longer than about a tenth of a second (the
typical human perceptual threshold), then we must divide the task into pieces, between

1We saw a simpler example of such a loop in section 8.6 (page ??).

6 CHAPTER 12. CONCURRENCY

procedure parse page (address : url)
contact server, request page contents
parse html header
while current token in {“<p>”, “<h1>”, “”, . . . ,

“<background”, “<image”, “<table”, “<frameset”, . . . }
case current token of

“<p>” : break paragraph
“<h1>” : format heading; match (“</h1>”)
“” : format list; match (“”)
. . .
“<background” :

a : attributes := parse attributes
fork render background (a)

“<image” : a : attributes := parse attributes
fork render image (a)

“<table” : a : attributes := parse attributes
scan forward for “</table>” token
token stream s :=. . . –– table contents
fork format table (s, a)

“<frameset” :
a : attributes := parse attributes
parse frame list (a)
match (“</frameset>”)

. . .
. . .

procedure parse frame list (a1 : attributes)
while current token in {“<frame”, “<frameset”, “<noframes>”}

case current token of
“<frame” : a2 : attributes := parse attributes

fork format frame (a1, a2)
. . .

Figure 12.2: Thread-based code from a hypothetical WWW browser. To first approxi-
mation, the parse page subroutine is the root of a recursive-descent parser for HTML. In
several cases, however, the actions associated with recognition of a construct (background,
image, table, frameset) proceed concurrently with continued parsing of the page itself. In
this example, concurrent threads are created with the fork operation. Other threads would
be created automatically in response to keyboard and mouse events.

12.1. BACKGROUND AND MOTIVATION 7

type task descriptor = record
–– fields in lieu of thread-local variables, plus control-flow information
. . .

ready tasks : queue of task descriptor
. . .
procedure dispatch

loop
–– try to do something input-driven
if a new event E (message, keystroke, etc.) is available

if an existing task T is waiting for E
continue task (T, E)

else if E can be handled quickly, do so
else

allocate and initialize new task T
continue task (T, E)

–– now do something compute bound
if ready tasks is non-empty

continue task (dequeue (ready tasks), ‘ok’)

procedure continue task (T : task, E : event)
if T is rendering an image

and E is a message containing the next block of data
continue image render (T, E)

else if T is formatting a page
and E is a message containing the next block of data

continue page parse (T, E)
else if T is formatting a page

and E is ‘ok’ –– we’re compute bound
continue page parse (T, E)

else if T is reading the bookmarks file
and E is an I/O completion event

continue goto page (T, E)
else if T is formatting a frame

and E is a push of the “stop” button
deallocate T and all tasks dependent upon it

else if E is the “edit preferences” menu item
edit preferences (T, E)

else if T is already editing preferences
and E is a newly typed keystroke

edit preferences (T, E)
. . .

Figure 12.3: Dispatch loop from a hypothetical non-thread-based WWW browser. The
clauses in continue task must cover all possible combinations of task state and triggering
event. The code in each clause performs the next coherent unit of work for its task, returning
when (a) it must wait for an event, (b) it has consumed a significant amount of compute
time, or (c) the task is complete. Prior to returning, respectively, code (a) places the task
in a dictionary (used by dispatch) that maps awaited events to the tasks that are waiting
for them, (b) enqueues the task in ready tasks, or (c) deallocates the task.

8 CHAPTER 12. CONCURRENCY

which we save state and return to the top of the loop. These considerations imply that the
condition at the top of the loop must cover the full range of asynchronous events, and that
evaluations of the condition must be interleaved with continued execution of any tasks that
were subdivided due to lengthy computation. (In practice we would probably need a more
sophisticated mechanism than simple interleaving to ensure that neither input-driven nor
compute-bound tasks hog more than their share of resources.)

The principal problem with a dispatch loop—beyond the complexity of subdividing
tasks and saving state—is that it hides the algorithmic structure of the program. Every
distinct task (retrieving a page, rendering an image, walking through nested menus) could
be described elegantly with standard control-flow mechanisms, if not for the fact that we
must return to the top of the dispatch loop at every delay-inducing operation. In effect,
the dispatch loop turns the program “inside out”, making the management of tasks explicit
and the control flow within tasks implicit. A thread package turns the program “right-
side out”, making the management of tasks (threads) implicit and the control flow within
threads explicit.

With the development of personal computers, much of the history of operating systems
has repeated itself. Early PCs performed busy-wait I/O and ran one application at a time.
With the development of Microsoft Windows and the Multifinder version of the MacOS,
PC vendors added the ability to hold more than one program in memory at once, and to
switch between them on I/O. Because a PC is a single-user machine, however, the need
for preemption was not felt as keenly as in multi-user systems. For a long time it was
considered acceptable for the currently running program to hog the processor: after all, that
program is what the (single) user wants to run. As PCs became more sophisticated, however,
users began to demand concurrent execution of threads such as those in a browser, as well
as “background” threads that update windows, check for e-mail, babysit slow printers,
etc. To some extent background computation can be accommodated by requiring every
program to “voluntarily” yield control of the processor at well-defined “clean points” in
the computation. This sort of “cooperative multiprogramming” was found in Windows 3.1
and MacOS version 7. Unfortunately, some programs do not yield as often as they should,
and the inconsistent response of cooperatively multiprogrammed systems grew increasingly
annoying to users. Windows 95 added preemption for 32-bit applications. Windows NT
and MacOS X add preemption for all programs, running them in separate address spaces
so bugs in one program don’t damage another, or cause the machine to crash.

12.1.3 Multiprocessor Architecture

Single-chassis parallel computers can be grouped into two broad categories: those in which
processors share access to common memory, and those in which they must communicate with
messages. Some authors use the term multicomputer for message-passing machines, and
reserve the term multiprocessor only for machines with shared memory. More commonly,
multiprocessor is used for both classes, with the distinction being made by context or extra
adjectives, e.g. shared-memory multiprocessor. The distinction between a multicomputer
and a mere collection of computers on a network is that the former is more “tightly coupled”,
generally occupying a single cabinet or collection of cabinets, with fast, physically short
interconnections and a common operating system. The distinction is sometimes a judgment
call: one can buy fast, physically short interconnects for a collection of workstations, which

12.1. BACKGROUND AND MOTIVATION 9

are then administered as a multicomputer. One can also use a commercial multicomputer
(with remote terminals) in place of a workstation network.

Small shared-memory multiprocessors are usually symmetric, in the sense that all mem-
ory is equally distant from all processors. Large shared-memory multiprocessors usually
display a distributed memory architecture, in which each memory bank is physically adja-
cent to a particular processor or small group of processors. Any processor can access the
memory of any other, but local memory is faster. The small machines are sometimes called
SMPs, for “symmetric multiprocessor.” Their large cousins are sometimes called NUMA
machines, for “non-uniform memory access”.

Since the late 1960’s, the market for high-end supercomputers has been dominated by
so-called vector processors, which provide special instructions capable of applying the same
operation to every element of an array. Vector instructions are very easy to pipeline. They
are useful in many scientific programs, particularly those in which the programmer has
explicitly annotated loops whose iterations can execute concurrently (we will discuss such
loops in sections 12.2.3 and 12.3.4 below). Given current technological trends, however, it
is widely believed that vector processors will be replaced in the next few years by machines
built from general-purpose microprocessors. (At the same time, ideas from vector processors
have made their way into the microprocessor world, e.g. in the form of the MMX extensions
to the Pentium instruction set.)

From the point of view of a language or library implementor, the principal distinction
between a message-based multicomputer and a shared-memory multiprocessor is that com-
munication on the former requires the active participation of processors on both ends of the
connection: one to send, the other to receive. On a shared-memory machine, a processor
can read and write remote memory without the assistance of a remote processor. In most
cases remote reads and writes use the same interface (i.e. load and store instructions) as
local reads and writes. A few machines (e.g. the Cray T3E) support shared memory but
require a processor to use special instruction sequences to access remote locations.

No matter what the communication model, every parallel computer requires some sort of
interconnection network to tie its processors and memories together. Most small, symmetric
machines are connected by a bus. A few are connected by a crossbar switch, in which every
processor has a direct connection to every memory bank, forming a complete bipartite
graph. Larger machines can be grouped into two camps: those with indirect and direct
networks. An indirect network resembles a fishing net stretched around the outside of a
cylinder (see figure 12.4). The “knots” in the net are message-routing switches. A direct
network has no internal switches: all connections run directly from one node to another.
Both indirect and direct networks have many topological variants. Indirect networks are
generally designed so that the distance from any node to any other is O(logP), where P

is the total number of nodes. The distance between nodes in a direct network may be
as large as O(

√
P). In practice, a hardware technique known as wormhole routing makes

communication with distant nodes almost as fast as with neighbors.
In any machine built from modern microprocessors, performance depends critically on

very fast (low latency) access to memory. To minimize delays, almost all machines depend
on caches. On a message-passing machine, each processor caches its own memory. On
a shared memory machine, however, caches introduce a serious problem: unless we do
something special, a processor that has cached a particular memory location will not see
changes that are made to that location by other processors. This problem—how to keep

10 CHAPTER 12. CONCURRENCY

...
...

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P
P

P

Figure 12.4: Multiprocessor network topology. In an indirect network (left), processing
nodes are equally distant from one another. They communicate through a log-depth switch-
ing network. In a direct network (right), there are no switching nodes: each processing node
sends messages through a small fixed number of neighbors.

processor A

cache
X : 4

memory
X : 3

processor B

cache
X : 3

processor Z

cache

...

Figure 12.5: The cache coherence problem for shared-memory multiprocessors. Here pro-
cessors A and B have both read variable X from memory. As a side effect, a copy of X has
been created in the cache of each processor. If A now changes X to 4 and B reads X again,
how do we ensure that the result is a 4 and not the still-cached 3? Similarly, if Z reads X
into its cache, how do we ensure that it obtains the 4 from A’s cache instead of the stale 3
from main memory?

12.2. CONCURRENT PROGRAMMING FUNDAMENTALS 11

cached copies of a memory location consistent with one another—is known as the coherence
problem (see figure 12.5). On bus-based symmetric machines the problem is relatively
easy to solve: the broadcast nature of the communication medium allows cache controllers
to eavesdrop (snoop) on the memory traffic of other processors. When another processor
writes a location that is contained in the local cache, the controller can either grab the
new value off the bus or, more commonly, invalidate the affected cache line, forcing the
processor to go back to memory (or to some other processor’s cache) the next time the line
is needed. Bus-based cache coherence algorithms are now a standard, built-in part of most
commercial microprocessors. On large machines, the lack of a broadcast bus makes cache
coherence a significantly more difficult problem; commercial implementations are available,
but the subject remains an active topic of research.

As of 1999, small bus-based SMPs are available from dozens of manufacturers, with
x86, MIPS, Alpha, PowerPC, Sparc, and PA/RISC processors. Larger, cache-coherent
shared-memory multiprocessors are available from several manufacturers, including Convex,
Sequent, and SGI. The Cray T3E is a large shared-memory multiprocessor without cache
coherence; remote locations can be accessed directly, but are never cached. IBM’s SP-2 is
currently the leader among large, message-based multicomputers. The field is very much in
flux: several large parallel machines and manufacturers have disappeared from the market
in recent years; several more are scheduled to appear in the near future.

12.2 Concurrent Programming Fundamentals

We will use the word ‘concurrency’ to characterize any program in which two or more
execution contexts may be active at the same time. Under this definition, coroutines are
not concurrent, because only one of them can be active at once. We will use the term
‘parallelism’ to characterize concurrent programs in which execution is actually happening
in more than one context at once. True parallelism thus requires parallel hardware. From
a semantic point of view, there is no difference between true parallelism and the “quasi-
parallelism” of a preemptive concurrent system, which switches between execution contexts
at unpredictable times: the same programming techniques apply in both situations.

Within a concurrent program, we will refer to an execution context as a thread. The
threads of a given program are implemented on top of one or more processes provided by the
operating system. OS designers often distinguish between a heavyweight process, which has
its own address space, and a collection of lightweight processes, which may share an address
space. Lightweight processes were added to most variants of Unix in the late 1980’s and
early 1990’s, to accommodate the proliferation of shared-memory multiprocessors. Without
lightweight processes, the threads of a concurrent program must run on top of more than
one heavyweight process, and the language implementation must ensure that any data that
is to be shared among threads is mapped into the address space of all the processes.

We will sometimes use the word task to refer to a well-defined unit of work that must
be performed by some thread. In one common programming idiom, a collection of threads
shares a common “bag of tasks”—a list of work to be done. Each thread repeatedly removes
a task from the bag, performs it, and goes back for another. Sometimes the work of a task
entails adding new tasks to the bag.

Unfortunately, the vocabulary of concurrent programming is not consistent across lan-
guages or authors. Several languages call their threads processes. Ada calls them tasks.

12 CHAPTER 12. CONCURRENCY

Several operating systems call lightweight processes threads. The Mach OS, from which
OSF Unix is derived, calls the address space shared by lightweight processes a task. A few
systems try to avoid ambiguity by coining new words, such as ‘actors’ or ‘filaments’. We will
attempt to use the definitions of the preceding two paragraphs consistently, and to identify
cases in which the terminology of particular languages or systems differs from this usage.

12.2.1 Communication and Synchronization

In any concurrent programming model, two of the most crucial issues to be addressed are
communication and synchronization. Communication refers to any mechanism that allows
one thread to obtain information produced by another. Communication mechanisms for
imperative programs are generally based on either shared memory or message passing. In
a shared-memory programming model, some or all of a program’s variables are accessible
to multiple threads. For a pair of threads to communicate, one of them writes a value to a
variable and the other simply reads it. In a message-passing programming model, threads
have no common state. For a pair of threads to communicate, one of them must perform
an explicit send operation to transmit data to another.

Synchronization refers to any mechanism that allows the programmer to control the
relative order in which operations occur in different threads. Synchronization is generally
implicit in message-passing models: a message must be sent before it can be received. If a
thread attempts to receive a message that has not yet been sent, it will wait for the sender
to catch up. Synchronization is generally not implicit in shared-memory models: unless we
do something special, a “receiving” thread could read the “old” value of a variable, before
it has been written by the “sender”. In both shared-memory and message-based programs,
synchronization can be implemented either by spinning (also called busy-waiting) or by
blocking. In busy-wait synchronization, a thread runs a loop in which it keeps reevaluating
some condition until that condition becomes true (e.g. until a message queue becomes non-
empty or a shared variable attains a particular value)—presumably as a result of action
in some other thread, running on some other processor. Note that busy-waiting makes no
sense for synchronizing threads on a uniprocessor: we cannot expect a condition to become
true while we are monopolizing a resource (the processor) required to make it true. (A
thread on a uniprocessor may sometimes busy-wait for the completion of I/O, but that’s a
different situation: the I/O device runs in parallel with the processor.)

In blocking synchronization (also called scheduler-based synchronization), the waiting
thread voluntarily relinquishes its processor to some other thread. Before doing so, it leaves
a note in some data structure associated with the synchronization condition. A thread that
makes the condition true at some point in the future will find the note and take action
to make the blocked thread run again. We will consider synchronization again briefly in
section 12.2.4, and then more thoroughly in section 12.3.

As noted in section 12.1.3, the distinction between shared memory and message passing
applies not only to languages and libraries, but to computer hardware as well. It is important
to note that the model of communication and synchronization provided by the language or
library need not necessarily agree with that of the underlying hardware. It is easy to
implement message passing on top of shared-memory hardware. With a little more effort,
one can also implement shared memory on top of message-passing hardware. Systems in
this latter camp are sometimes referred to as software distributed shared memory (S-DSM).

12.2. CONCURRENT PROGRAMMING FUNDAMENTALS 13

12.2.2 Languages and Libraries

Concurrency can be provided to the programmer in the form of explicitly concurrent lan-
guages, compiler-supported extensions to traditional sequential languages, or library pack-
ages outside the language proper. The latter two approaches are by far the most common:
the vast majority of parallel programs currently in use are either annotated Fortran for
vector machines or C/C++ code with library calls.

Most SMP vendors provide a parallel programming library based on shared memory and
threads. Most Unix vendors are converging on the Posix pthreads standard [Ope96]. For
message-passing hardware, efforts to provide a shared-memory programming model (i.e. via
S-DSM) are still considered experimental: most of the library packages for multicomputers
and networks provide a message-based programming model. Message-based packages can
in turn be grouped into those that are intended primarily for communication among the
processes of a single program and those that are intended primarily for communication
across program boundaries. Packages in this latter camp usually implement one of the
standard Internet protocols [PD96, chap. 6], and bear a strong resemblance to file-based
I/O (section 7.9).

The two most popular packages for message passing within a parallel program are
PVM [Sun90, GBD+94] and MPI [BDH+95, SOHL+95]. The two packages provide similar
functionality in most respects—enough so that their developers are thinking about merging
them [GKP96]. PVM is richer in the area of creating and managing processes on a hetero-
geneous distributed network, in which machines of different types may join and leave the
computation during execution. MPI provides more control over how communication is im-
plemented (to map it onto the primitives of particular high-performance multicomputers),
and a richer set of communication primitives, especially for so-called collective commu-
nication—one-to-all, all-to-one, or all-to-all patterns of messages among a set of threads.
Implementations of PVM and MPI are available for C, C++, and Fortran.

For communication based on requests from clients to servers, remote procedure calls
(RPCs) provide an attractive interface to message passing. Rather than talk to a server
directly, an RPC client calls a local stub procedure, which packages its parameters into a
message, sends them to a server, and waits for a response, which it returns to the client
in the form of result parameters. Several vendors provide tools that will generate stubs
automatically from a formal description of the server interface. In the Unix world, Sun’s
RPC [Sri95] is the de-facto standard. Several generalizations of RPC, most of them based
on binary components (page ??), are currently competing for prominence for Internet-based
computing [Bro96, Sie96, Sun97].

In comparison to library packages, an explicitly concurrent programming language has
the advantage of compiler support. It can make use of syntax other than subroutine calls,
and can integrate communication and thread management more tightly with concepts such
as type checking, scoping, and exceptions. At the same time, since most programs are
sequential, it is difficult for a concurrent language to gain widespread acceptance, partic-
ularly if the concurrent features make the sequential case more difficult to understand.
As noted in section 12.1, Algol 68 included concurrent features, though they were never
widely used. Concurrency also appears in more recent “mainstream” languages, including
Ada, Modula-3, and Java. A little farther afield, but still commercially important, the Oc-
cam programming language [JG89], based on Hoare’s Communicating Sequential Processes

14 CHAPTER 12. CONCURRENCY

(CSP) notation [Hoa78], has an active user community. Occam was the language of choice
for systems built from the INMOS transputer processor, widely used in Europe but recently
discontinued. Andrews’s SR language [AO93] is widely used in teaching.

In the scientific community, expertise with vectorizing compilers has made its way into
parallelizing compilers for multicomputers and multiprocessors, again exploiting annotations
provided by the programmer. Several of the groups involved with this transition came
together in the early 1990’s to develop High Performance Fortran (HPF) [KLS+94], a data-
parallel dialect of Fortran 90. (A data-parallel program is one in which the principal source
of parallelism is the application of common operations to the members of a very large
data set. A task-parallel program is one in which much of the parallelism stems from
performing different operations concurrently. A data-parallel language is one whose features
are designed for data-parallel programs.)

12.2.3 Thread Creation Syntax

One could imagine a concurrent programming system in which a fixed collection of threads
was created by the language implementation, but such a static form of concurrency is
generally too restrictive. Most concurrent systems allow the programmer to create new
threads at run time. Syntactic and semantic details vary considerably from one language
or library to another. There are at least six common options: (1) co-begin, (2) parallel
loops, (3) launch-at-elaboration, (4) fork (with optional join), (5) implicit receipt, and
(6) early reply. The first two options delimit threads with special control-flow constructs.
The others declare threads with syntax resembling (or identical to) subroutines.

The SR programming language provides all six options. Algol 68 and Occam use
co-begin. Occam also uses parallel loops, as does HPF. Ada uses both launch-at-elabora-
tion and fork. Modula-3 and Java use fork/join. Implicit receipt is the usual mechanism
in RPC systems. The coroutine detach operation of Simula can be considered a form of
early reply.

Co-begin

In Algol 68 the behavior of a begin. . . end block depends on whether the internal expressions
are separated by semicolons or commas. In the former case, we have the usual sequential
semantics. In the latter case, we have either non-deterministic or concurrent semantics,
depending on whether begin is preceded by the keyword par. The block

begin
a := 3,
b := 4

end

indicates that the assignments to a and b can occur in either order. The block

par begin
a := 3,
b := 4

end

12.2. CONCURRENT PROGRAMMING FUNDAMENTALS 15

indicates that they can occur in parallel. Of course, parallel execution makes little sense for
such trivial operations as assignments; the par begin construct is usually used for more
interesting operations:

par begin # concurrent #
p (a, b, c),
begin # sequential #

d := q (e, f);
r (d, g, h)

end,
s (i, j)

end

Here the executions of p and s can proceed in parallel with the sequential execution of the
nested block (with the calls to q and r):

p (a, b, c) d := q (e, f)
r (d, g, h)

s (i, j)

Several other concurrent languages provide a variant of par begin. In Occam, which
uses indentation to delimit nested control constructs, one would write

par
p (a, b, c)
seq

d := q (e, f)
r (d, g, h)

s (i, j)

In general, a control construct whose constituent statements are meant to be executed
concurrently is known as co-begin. In an Algol 68 or Occam implementation, threads
created by co-begin must share access to a common stack frame. To avoid this implemen-
tation complication, SR provides a variant of co-begin (delimited by co...oc) in which
the constituent statements must all be procedure invocations.

Parallel loops

Several concurrent languages, including SR, Occam, and some dialects of Fortran, provide
a loop whose iterations are to be executed concurrently. In SR one can say

16 CHAPTER 12. CONCURRENCY

co (i := 5 to 10) ->
p (a, b, i) # six instances of p, each with a different i

oc

In Occam:

par i = 5 for 6
p (a, b, i) # six instances of p, each with a different i

In SR it is the programmer’s responsibility to make sure that concurrent execution is
safe, in the sense that correctness will never depend on the outcome of race conditions. In
the above example, access to global variables in the various instances of p would generally
need to be synchronized, to make sure that those instances do not conflict with one another.
In Occam, language rules prohibit conflicting accesses. The compiler checks to make sure
that a variable that is written by one thread is neither read nor written by any concurrently
active thread. In the code above, the Occam compiler would insist that all three parameters
to p be passed by value (not result). Concurrently active threads in Occam communicate
solely by sending messages.

Several parallel dialects of Fortran have provided parallel loops, with varying semantics.
The forall loop adopted by HPF has since been incorporated into the 1995 revision of
Fortran 90. Like the loops above, it indicates that iterations can proceed in parallel. To
resolve race conditions, however, it imposes automatic, internal synchronization on the
constituent statements of the loop, each of which must be an assignment statement or a
nested forall loop. Specifically, all reads of variables in a given assignment statement,
in all iterations, must occur before any write to the left-hand side, in any iteration. The
writes of the left-hand side in turn must occur before any reads in the following assignment
statement. In the following example, the first assignment in the loop will read n−1 elements
of B and n−1 elements of C, and then update n−1 elements of A. Subsequently, the second
assignment statement will read all n elements of A and then update n − 1 of them.

forall (i=1:n-1)
A(i) = B(i) + C(i)
A(i+1) = A(i) + A(i+1)

end forall

Note in particular that all of the updates to A(i) in the first assignment statement occur
before any of the reads in the second assignment statement. Moreover in the second assign-
ment statement the update to A(i+1) is not seen by the read of A(i) in the “subsequent”
iteration: the iterations occur in parallel and each reads the variables on its right-hand side
before updating its left-hand side.

For loops that “iterate” over the elements of an array, the forall semantics are ideally
suited for execution on a vector machine. With a little extra effort, they can also be adapted
to a more conventional multiprocessor. In HPF, an extensive set of data distribution and
alignment directives allows the programmer to scatter the elements of an array across
the memory associated with a large number of processors. Within a forall loop, the
computation in a given assignment statement is usually performed by the processor that
“owns” the element on the assignment’s left-hand side. In many cases an HPF or Fortran 95

12.2. CONCURRENT PROGRAMMING FUNDAMENTALS 17

compiler can prove that there are no dependences among certain (portions of) constituent
statements of a forall loop, and can allow them to proceed without actually implementing
synchronization.

Launch-at-elaboration

In Ada and SR (and in many other languages), the code for a thread may be declared
with syntax resembling that of a subroutine with no parameters. When the declaration is
elaborated, a thread is created to execute the code. In Ada (which calls its threads tasks)
we may write:

procedure P is
task T is

...
end T;

begin -- P
...

end P;

Task T has its own begin. . . end block, which it begins to execute as soon as control enters
procedure P. If P is recursive, there may be many instances of T at the same time, all
of which execute concurrently with each other and with whatever task is executing (the
current instance of) P. The main program behaves like an initial default task.

When control reaches the end of procedure P, it will wait for the appropriate instance
of T (the one that was created at the beginning of this instance of P) to complete before
returning. This rule ensures that the local variables of P (which are visible to T under the
usual static scope rules) are never deallocated before T is done with them.

A launch-at-elaboration thread in SR is called a process.

Fork/join

Co-begin, parallel loops, and launch-at-elaboration all lead to a concurrent control-flow
pattern in which thread executions are properly nested (see figure 12.6(a)). With parallel
loops, each thread executes the same code, using different data; with co-begin and launch-
at-elaboration, the code in different threads can be different. Put another way, parallel
loops are generally data-parallel; co-begin and launch-at-elaboration are task-parallel.

The fork operation is more general: it makes the creation of threads an explicit, exe-
cutable operation. The companion join operation allows a thread to wait for the completion
of a previously-forked thread. Because fork and join are not tied to nested constructs,
they can lead to arbitrary patterns of concurrent control flow (figure 12.6(b)).

In addition to providing launch-at-elaboration tasks, Ada allows the programmer to
define task types :

task type T is
...

begin
...

end T;

18 CHAPTER 12. CONCURRENCY

......

(a) (b)

Figure 12.6: Lifetime of concurrent threads. With co-begin, parallel loops, or launch-at-
elaboration (a), threads are always properly nested. With fork/join (b), more general
patterns are possible.

The programmer may then declare variables of type access T (pointer to T), and may
create new tasks via dynamic allocation:

pt : access T := new T;

The new operation is a fork: it creates a new thread and starts it executing. There is no
explicit join operation in Ada, though parent and child tasks can always synchronize with
one another explicitly if desired, e.g. immediately before the child completes its execution.
In any scope in which a task type is declared, control will wait automatically at the end of
the scope for all dynamically created tasks of that type to terminate. This convention avoids
creating dangling references to local variables (Ada stack frames have limited extent).

Modula-3 provides both fork and join. The fork operation returns a reference of type
thread; the join operation takes this reference as parameter:

t := Fork (c);
...
Join (t);

Each Modula-3 thread begins execution in a specified subroutine. The language designers
could have chosen to make this subroutine the argument to Fork, but this choice would
have forced all Forked subroutines to accept the same fixed set of parameters, in accordance
with strong typing. To avoid this limitation, Modula-3 defines the parameter to Fork to be
a “thread closure”2 object (Modula-3 has object-oriented features). The object contains a
reference to the thread’s initial subroutine, together with any needed start-up arguments.

2Thread closures should not be confused with the closures used for deep binding of subroutine referencing
environments, as described in section 3.4. Modula-3 uses closures in the traditional sense of the word when

12.2. CONCURRENT PROGRAMMING FUNDAMENTALS 19

The Fork operation calls the specified subroutine, passing a single argument: a reference
to the thread closure object itself. The standard thread library defines a thread closure
class with nothing in it except the subroutine reference. Programmers can define derived
classes that contain additional fields, which the thread’s subroutine can then access. There
is no comparable mechanism to pass start-up arguments to a task in Ada; information that
would be passed as thread closure fields in Modula-3 must be sent to the already-started
task in Ada via messages or shared variables.

Threads may be created in SR by sending a message to a proc, which resembles a
procedure with a separate forward declaration, called an op. One of the most distinctive
characteristics of SR is a remarkably elegant integration of sequential and concurrent con-
structs, and of message passing and subroutine invocation. An SR procedure is actually
defined as syntactic sugar for an op/proc pair that has been limited to call style forks,
in which the parent thread waits for the child to complete before continuing execution. As
in Ada, there is no explicit join operation in SR, though a parent and child can always
synchronize with one another explicitly if desired.

In Java one obtains a thread by constructing an object of some class derived from a
predefined class called Thread:

class image renderer extends Thread {
...
public void image renderer (args) {

---- constructor
}
public void run () {

---- code to be run by the thread
}

}
...
image renderer rend = new image renderer (constructor args);

Superficially, the use of new resembles the creation of dynamic tasks in Ada. In Java,
however, the new thread does not begin execution when first created. To start it, the parent
(or some other thread) must call the member function (method) named start, which is
defined in Thread:

rend.start ();

Start makes the thread runnable, arranges for it to execute a member function named
run, and returns to the caller. The programmer must define an appropriate run method
in every class derived from Thread. The run method is meant to be called only by start;
programmers should not call it directly, nor should they redefine start. There is also a
join method:

passing subroutines as parameters, but because its local objects have limited extent (again, see section 3.4), it
does not allow nested subroutines to be returned from functions or assigned into subroutine-valued variables.
The subroutine reference in a thread “closure” is therefore guaranteed not to require a special referencing
environment; it can be implemented as just a code address.

20 CHAPTER 12. CONCURRENCY

rend.join (); // wait for completion

Implicit receipt

The mechanisms described in the last few paragraphs allow a program to create new threads
at run time. In each case those threads run in the same address space as the existing threads.
In RPC systems it is often desirable to create a new thread automatically in response to
an incoming request from some other address space. Rather than have an existing thread
execute a receive operation, a server can bind a communication channel (which may be
called a link, socket, or connection) to a local thread body or subroutine. When a request
comes in, a new thread springs into existence to handle it.

In effect, the bind operation grants remote clients the ability to perform a fork within
the server’s address space. In SR the effect of bind is achieved by declaring a capability
variable, initializing it with a reference to a procedure (an op for which there is a proc),
and then sending it in a message to a thread in another address space. The receiving thread
can then use that capability in a send or call operation, just as it would use the name of
a local op. When it does so, the resulting message has the effect of performing a fork in
the original address space. In RPC stub systems designed for use with ordinary sequential
languages, the creation and management of threads to handle incoming calls is often less
than completely automatic; we will consider the alternatives in section 12.4.4 below.

Early reply

The similarity of fork and implicit receipt in SR reflects an important duality in the nature
of subroutines. We normally think of sequential subroutines in terms of a single thread which
saves its current context (its program counter and registers), executes the subroutine, and
returns to what it was doing before (figure 12.7 (a)). The effect is the same, however, if
we have two threads: one that executes the caller and another that executes the callee
(figure 12.7 (b)). The caller waits for the callee to reply before continuing execution. The
call itself is a fork/join pair, or a send and receive on a communication channel that
has been set up for implicit receipt on the callee’s end.

The two ways of thinking about subroutine calls suggest two different implementations,
but either can be used to implement the other. In general, a compiler will want to avoid
creating a separate thread whenever possible, in order to save time. As noted in the sub-
section on fork/join above, SR uses the two-thread model of subroutine calls. Within a
single address space, however, it implements them with the usual subroutine-call mecha-
nism whenever possible. In a similar vein, the Hermes language [SBG+91], which models
subroutines in terms of threads and message passing, is able to use the usual subroutine-call
implementation in the common case.

If we think of subroutines in terms of separate threads for the caller and callee, there
is actually no particular reason why the callee should have to complete execution before it
allows the caller to proceed—all it really has to do is complete the portion of its work on
which result parameters depend. Early reply is a mechanism that allows a callee to return
those results to the caller without terminating. After an early reply, the caller and callee
continue execution concurrently (figure 12.7 (c)).

If we think of subroutines in terms of a single thread for the caller and callee, then early
reply can also be seen as a means of creating new threads. When the thread executing

12.2. CONCURRENT PROGRAMMING FUNDAMENTALS 21

(a) (b)

(wait)

call fork

return join

(c)

(wait)

fork

reply reply
(fork)

(d)

call

Figure 12.7: Threads, subroutine calls, and early reply. Conventionally, subroutine calls
are conceptualized as using a single thread (a). Equivalent functionality can be achieved
with separate threads (b). Early reply (c) allows a forked thread to continue execution after
“returning” to the caller. To avoid creation of a callee thread in the common case, we can
wait until the reply to do the fork (d).

a subroutine performs an early reply, it splits itself into a pair of threads: one of these
returns, the other continues execution in the callee (figure 12.7 (d)). In SR, any subroutine
can execute an early reply operation:

reply

For calls within a single address space, the SR compiler waits until the reply before creat-
ing a new thread; a subroutine that returns without replying uses a single implementation
thread for the caller and callee. Until the time of the reply, the stack frame of the subrou-
tine belongs to the calling thread. To allow it to become the initial frame of a newly created
thread, an SR implementation can employ a memory management scheme in which stack
frames are allocated dynamically from the heap and linked together with pointers. Alterna-
tively, the implementation can copy the current frame into the bottom of a newly allocated
stack at the time of the reply. A fully general cactus stack (as described in section 8.6.1) is
not required in SR: every thread is created in its own subroutine, and subroutines do not
nest. Early reply resembles the coroutine detach operation of Simula. It also appears in
Lynx [Sco91].

Much of the motivation for early reply comes from applications in which the parent of
a newly created thread needs to ensure that the thread has been initialized properly before
it (the parent) continues execution. In a web browser, for example, the thread responsible
for formatting a page will create a new child for each in-line image. The child will contact
the appropriate server and begin to transfer data. The first thing the server will send is
an indication of the image’s size. The page-formatting thread (the parent of the image-
rendering thread) needs to know this size in order to place text and other images properly
on the page. Early reply allows the parent to create the child and then wait for it to reply

22 CHAPTER 12. CONCURRENCY

processor 1

process scheduler

thread scheduler

O
S

ke
rn

el
us

er
 s

pa
ce

processor 2 processor N

pr
oc

es
s

1a

pr
oc

es
s

1i

...

......

pr
oc

es
s

M
a

pr
oc

es
s

M
j

...

th
re

ad
 1

a

th
re

ad
 1

b

th
re

ad
 1

k

th
re

ad
 M

a

th
re

ad
 M

b

th
re

ad
 M

l

...... ...

Figure 12.8: Two-level implementation of threads. A thread scheduler, implemented in a
library or language run-time package, multiplexes threads on top of one or more kernel-
level processes, just as the process scheduler, implemented in the operating system kernel,
multiplexes processes on top of one or more physical processors.

with size information, at which point the parent and child can proceed in parallel. (We
ignored this issue in figure 12.2.)

In Java, a similar purpose is served by separating thread creation from invocation of
the start method. In our browser example, a page-formatting thread that creates a child
to render an image could call a get size method of the child before it calls the child’s
start method. Get size would make the initial contact with the server and return size
information to the parent. Because get size is a function member of the child, any data
it initializes, including the size and connection-to-server information, will be stored in the
thread’s data members, where they will be available to the thread’s run method.

12.2.4 Implementation of Threads

As we noted in section 12.2, the threads of a concurrent program are usually implemented
on top of one or more processes provided by the operating system. At one extreme, we
could use a separate OS process for every thread; at the other extreme we could multiplex
all of a program’s threads on top of a single process. On a personal computer with a single
address space and relatively inexpensive processes, the one-process-per-thread extreme is
often acceptable. In a simple language on a uniprocessor, the all-threads-on-one-process
extreme may be acceptable. Commonly, language implementations adopt an in-between
approach, with a potentially large number of threads running on top of a smaller number
of processes (see figure 12.8).

12.2. CONCURRENT PROGRAMMING FUNDAMENTALS 23

The problem with putting every thread on a separate process is that processes (even
“lightweight” ones) are simply too expensive in many operating systems. Because they are
implemented in the kernel, performing any operation on them requires a system call. Be-
cause they are general-purpose, they provide features that most languages do not need, but
have to pay for anyway. (Examples include separate address spaces, priorities, accounting
information, and signal and I/O interfaces, all of which are beyond the scope of this book.)
At the other extreme, there are two problems with putting all threads on top of a single
process: first, it precludes parallel execution on a multiprocessor; second, if the currently
running thread makes a system call that blocks (e.g. waiting for I/O), then none of the
program’s other threads can run, because the single process is suspended by the OS.

In the common two-level organization of concurrency (user-level threads on top of kernel-
level processes), similar code appears at both levels of the system: the language run-time
system implements threads on top of one or more processes in much the same way that
the operating system implements processes on top of one or more physical processors. A
multiprocessor operating system may attempt to ensure that processes belonging to the
same application run on separate processors simultaneously, in order to minimize synchro-
nization delays (this technique is called co-scheduling, or gang scheduling). Alternatively,
it may give an application exclusive use of some subset of the processors (this technique
is called space sharing, or processor partitioning). Such kernel-level issues are beyond the
scope of this book; we concentrate here on user-level threads.

Typically, user-level threads are built on top of coroutines (section 8.6). Recall that
coroutines are a sequential control-flow mechanism, designed for implementation on top
of a single OS process. The programmer can suspend the current coroutine and resume
a specific alternative by calling the transfer operation. The argument to transfer is
typically a pointer to the context block of the coroutine.

To turn coroutines into threads, we can proceed in a series of three steps. First, we
hide the argument to transfer by implementing a scheduler that chooses which thread to
run next when the current thread yields the processor. Second, we implement a preemption
mechanism that suspends the current thread automatically on a regular basis, giving other
threads a chance to run. Third, we allow the data structures that describe our collection
of threads to be shared by more than one OS process, possibly on separate processors, so
that threads can run on any of the processes.

Uniprocessor scheduling

Figure 12.9 illustrates the data structures employed by a simple scheduler. At any particular
time, a thread is either blocked (i.e. for synchronization) or runnable. A runnable thread may
actually be running on some processor or it may be awaiting its chance to do so. Context
blocks for threads that are runnable but not currently running reside on a queue called the
ready list. Context blocks for threads that are blocked for scheduler-based synchronization
reside in data structures (usually queues) associated with the conditions for which they are
waiting. To yield the processor to another thread, a running thread calls the scheduler:

procedure reschedule
t : thread := dequeue (ready list)
transfer (t)

24 CHAPTER 12. CONCURRENCY

ready list

waiting for condition foo waiting for condition bar

current_thread

...

Figure 12.9: Data structures of a simple scheduler. A designated current thread is run-
ning. Threads on the ready list are runnable. Other threads are blocked, waiting for various
conditions to become true. If threads run on top of more than one OS-level process, each
such process will have its own current thread variable. If a thread makes a call into the
operating system, its process may block in the kernel.

Before calling into the scheduler, a thread that wants to run again at some point in the
future must place its own context block in some appropriate data structure. If it is blocking
for the sake of fairness—to give some other thread a chance to run—then it enqueues its
context block on the ready list:

procedure yield
enqueue (ready list, current thread)
reschedule

To block for synchronization, a thread adds itself to a queue associated with the awaited
condition:

procedure sleep on (ref Q : queue of thread)
enqueue (Q, current thread)
reschedule

When a running thread performs an operation that makes a condition true, it removes
one or more threads from the associated queue and enqueues them on the ready list.

Fairness becomes an issue whenever a thread may run for a significant amount of time
while other threads are runnable. To give the illusion of concurrent activity, even on a
uniprocessor, we need to make sure that each thread gets a frequent “slice” of the proces-
sor. With cooperative multi-threading , any long-running thread must yield the processor
explicitly from time to time (e.g. at the tops of loops), to allow other threads to run. As
noted in section 12.1.2, this approach allows one improperly written thread to monopolize
the system. Even with properly written threads, it leads to less than perfect fairness due
to non-uniform times between yields in different threads.

12.2. CONCURRENT PROGRAMMING FUNDAMENTALS 25

Preemption

Ideally, we should like to multiplex the processor fairly and at a relatively fine grain
(i.e. many times per second) without requiring that threads call yield explicitly. On
many systems we can do this in the language implementation by using timer signals for
preemptive multithreading. When switching between threads we ask the operating system
(which has access to the hardware clock) to deliver a signal to the currently running pro-
cess at a specified time in the future. The OS delivers the signal by saving the context
(registers and pc) of the process at the top of the current stack and transferring control to
a previously specified handler routine in the language run-time system. When called, the
handler modifies the state of the currently running thread to make it appear that the thread
had just executed a call to the standard yield routine. The handler then “returns” into
yield, which transfers control to some other thread, as if the one that had been running
had relinquished control of the process voluntarily.

Unfortunately, the fact that a signal may arrive at an arbitrary time introduces a race
between voluntary calls to the scheduler and the automatic calls triggered by preemption.
To illustrate the problem, suppose that a signal arrives when the currently running process
has just enqueued the currently running thread onto the ready list in yield, and is about
to call reschedule. When the signal handler “returns” into yield, the process will put
the current thread into the ready list a second time. If at some point in the future the
thread blocks for synchronization, its second entry in the ready list may cause it to run
again immediately, when it should be waiting. Even worse problems can arise if a signal
occurs in the middle of an enqueue, at a moment when the ready list is not even a properly
structured queue. To resolve the race and avoid corruption of the ready list, thread packages
commonly disable signal delivery during scheduler calls:

procedure yield
disable signals
enqueue (ready list, current thread)
reschedule
reenable signals

For this convention to work, every fragment of code that calls reschedule must disable
signals prior to the call, and must reenable them afterward. Because reschedule contains
a call to transfer, signals may be disabled in one thread, and reenabled in another.

It turns out that the sleep on routine must also assume that signals are disabled and
enabled by the caller. To see why, suppose that a thread checks a condition, finds that it is
false, and then calls sleep on to suspend itself on a queue associated with the condition.
Suppose further that a timer signal occurs immediately after checking the condition, but
before the call to sleep on. Finally, suppose that the thread that is allowed to run after the
signal makes the condition true. Since the first thread never got a chance to put itself on
the condition queue, the second thread will not find it to make it runnable. When the first
thread runs again, it will immediately suspend itself, and may never be awakened. To close
this timing window—this internal in which a concurrent event may compromise program
correctness—the caller must ensure that signals are disabled before checking the condition:

26 CHAPTER 12. CONCURRENCY

disable signals
if not desired condition

sleep on (condition queue)
reenable signals

On a uniprocessor, disabling signals allows the check and the sleep to occur as a single,
atomic operation—they always appear to happen “all at once” from the point of view of
other threads.

Multiprocessor scheduling

A few concurrent languages (e.g. Distributed Processes [Bri78] and Lynx [Sco91]) are ex-
plicitly non-parallel: language semantics guarantee that only one thread will run in a given
address space at a time, with switches among threads occurring only at well-defined points
in the code. Most concurrent languages, however, permit threads to run in parallel. As
we noted in section 12.2, there is no difference from the programmer’s point of view be-
tween true parallelism (on multiple processors) and the “quasi-parallelism” of a system
that switches between threads on timer interrupts: in both cases, threads must synchronize
explicitly to cope with race conditions in the application program.

We can extend our preemptive thread package to run on top of more than one OS-
provided process by arranging for the processes to share the ready list and related data struc-
tures (condition queues, etc.—note that each process must have a separate current thread
variable). If the processes run on different processors of a shared-memory multiprocessor,
then more than one thread will be able to run at once. If the processes share a single
processor, then the program will be able to make forward progress even when all but one
of the processes are blocked in the operating system. Any thread that is runnable is placed
in the ready list, where it becomes a candidate for execution by any of the application’s
processes. When a process calls reschedule, the queue-based ready list we have been using
in our examples will give it the longest-waiting thread. The ready list of a more elaborate
scheduler might give priority to interactive or time-critical threads, or to threads that last
ran on the current processor, and may therefore still have data in the cache.

Just as preemption introduced a race between voluntary and automatic calls to scheduler
operations, true or quasi-parallelism introduces races between calls in separate OS processes.
To resolve the races, we must implement additional synchronization to make scheduler
operations in separate processes atomic. We will return to this subject in section 12.3.2.

12.3 Shared Memory

As noted in section 12.2.1, synchronization is the principal semantic challenge for shared-
memory concurrent programs. One commonly sees two forms of synchronization: mutual
exclusion and condition synchronization. Mutual exclusion ensures that only one thread
is executing a critical section of code at a given point in time. Condition synchronization
ensures that a given thread does not proceed until some specific condition holds (e.g. until
a given variable has a given value). It is tempting to think of mutual exclusion as a form of
condition synchronization (don’t proceed until no other thread is in its critical section), but
this sort of condition would require consensus among all extant threads, something that
condition synchronization doesn’t generally provide.

12.3. SHARED MEMORY 27

Our implementation of parallel threads, sketched at the end of section 12.2.4, requires
that processes (provided by the OS) use both mutual exclusion and condition synchroniza-
tion to protect the ready list and related data structures. Mutual exclusion appears in the
requirement that a process must never read or write the ready list while it is being modified
by another process; condition synchronization appears in the requirement that a process in
need of a thread to run must wait until the ready list is non-empty.

It is worth emphasizing that we do not in general want to overly synchronize programs.
To do so would eliminate opportunities for parallelism, which we generally want to maximize
in the interest of performance. The goal is to provide only as much synchronization as is
necessary in order to eliminate “bad” race conditions—those that might otherwise cause
the program to produce incorrect results.

In the first of the three subsections below we consider busy-wait synchronization mech-
anisms. In the second subsection we use busy-waiting among processes to implement a
parallelism-safe thread scheduler. In the final subsection we use the scheduler to implement
blocking synchronization for threads.

12.3.1 Busy-Wait Synchronization

Busy-wait condition synchronization is generally easy: if we can cast a condition in the
form of “location X contains value Y ”, then a thread (or process) that needs to wait for
the condition can simply read X in a loop, waiting for Y to appear. All that is required
from the hardware is that individual load and store instructions be atomic. Providing this
atomicity is not a trivial task (memory and/or busses must serialize concurrent accesses by
processors and devices), but almost every computer ever made has done it.

Busy-wait mutual exclusion is harder. We consider it under “spin locks” below. We
then consider a special form of condition synchronization, namely barriers. A barrier is
meant to be executed by all of the threads in a program. It guarantees that no thread will
continue past a given point in a program until all threads have reached that point. Like
mutual exclusion (and unlike most condition synchronization), barriers require consensus
among all extant threads. Barriers are fundamental to data-parallel computing. They
can be implemented either with busy-waiting or with blocking; we consider the busy-wait
version here.

Spin locks

Dekker is generally credited with finding the first two-thread mutual exclusion algorithm
that requires no atomic instructions other than load and store. Dijkstra [Dij65] published
a version that works for n threads in 1965. Peterson [Pet81] published a much simpler two-
thread algorithm in 1981. Building on Peterson’s algorithm, one can construct a hierarchical
n-thread lock, but it requires O(n logn) space and O(logn) time to get one thread into its
critical section [YA93]. Lamport [Lam87] published an n-thread algorithm in 1987 that
takes O(n) space and O(1) time in the absence of competition for the lock. Unfortunately,
it requires O(n) time when multiple threads attempt to enter their critical section at once.

To achieve mutual exclusion in constant time, one needs a more powerful atomic in-
struction. Beginning in the 1960’s, hardware designers began to equip their processors with
instructions that read, modify, and write a memory location as a single atomic operation.
The simplest read-modify-write instruction is known as test and set. It sets a Boolean

28 CHAPTER 12. CONCURRENCY

type lock = Boolean := false;

procedure acquire lock (ref L : lock)
while not test and set (L)

while L
–– nothing –– spin

procedure release lock (ref L : lock)
L := false

Figure 12.10: A simple test-and-test and set lock. Waiting processes spin with ordinary
read (load) instructions until the lock appears to be free, then use test and set to acquire
it. The very first access is a test and set, for speed in the common (no competition) case.

variable to true and returns an indication of whether the variable was false previously.
Given test and set, acquiring a spin lock is almost trivial:

while not test and set (L)
–– nothing –– spin

In practice, embedding test and set in a loop tends to result in unacceptable amounts
of bus traffic on a multiprocessor, as the cache coherence mechanism attempts to reconcile
writes by multiple processors attempting to acquire the lock. This overdemand for hardware
resources is known as contention, and is a major obstacle to good performance on large
machines.

To reduce contention, the writers of synchronization libraries often employ a test-and-
test and set lock, which spins with ordinary reads (satisfied by the cache) until it appears
that the lock is free (see figure 12.10). When a thread releases a lock there still tends to be
a flurry of bus activity as waiting threads perform their test and sets, but at least this
activity happens only at the boundaries of critical sections. On a large machine, bus or
interconnect traffic can be further reduced by implementing a backoff strategy, in which a
thread that is unsuccessful in attempting to acquire a lock waits for a while before trying
again.

Many processors provide atomic instructions more powerful than test and set. Several
can swap the contents of a register and a memory location atomically. A few can add a
constant to a memory location atomically, returning the previous value. On the x86, most
arithmetic instructions can be prefaced with a “lock” byte that causes them to update a
memory location atomically. Recent versions of the MIPS, Alpha, and PowerPC architec-
tures have converged on a pair of instructions called load linked and store conditional
(LL/SC). The first of these instructions loads a memory location into a register and stores
certain bookkeeping information into hidden processor registers. The second instruction
stores the register back into the memory location, but only if the location has not been
modified by any other processor since the load linked was executed. In the time between
the two instructions the processor is generally not allowed to touch memory, but it can
perform an almost arbitrary computation in registers, allowing the LL/SC pair to function

12.3. SHARED MEMORY 29

as a universal atomic primitive. To add the value in register r2 to memory location foo,
atomically, one would execute the following instructions:

start:
r1 := load linked (foo)
r1 := r1 + r2
store conditional (r1, foo)
if failed goto start

If several processors execute this code simultaneously, one of them is guaranteed to
succeed the first time around the loop. The others will fail and try again.

Using instructions such as atomic add or LL/SC, one can build spin locks that are fair,
in the sense that threads are guaranteed to acquire the lock in the order in which they first
attempt to do so. One can also build locks that work well—with no contention—on arbi-
trarily large machines [MCS91]. Finally, one can use universal atomic primitives to build
special-purpose concurrent data structures and algorithms that operate without locks, by
modifying locations atomically in a carefully determined order. Lock-free concurrent algo-
rithms are ideal for environments in which threads may pause (e.g. due to preemption) for
arbitrary periods of time. In important special cases (e.g. parallel garbage collection [HM92]
or queues [MS96]) lock-free algorithms can also be significantly faster than lock-based al-
gorithms. Herlihy [Her91] and others have developed general-purpose techniques to turn
sequential data structures into lock-free concurrent data structures, but these tend to be
rather slow.

An important variant on mutual exclusion is the reader-writer lock [CHP71]. Reader-
writer locks recognize that if several threads wish to read the same data structure, they
can do so simultaneously without mutual interference. It is only when a thread wants
to write the data structure that we need to prevent other threads from reading or writing
simultaneously. Most busy-wait mutual exclusion locks can be extended to allow concurrent
access by readers (see exercise 8).

Barriers

Barriers are common in data-parallel numeric algorithms. In finite element analysis, for
example, a physical object such as, say, a bridge may be modeled as an enormous collection
of tiny metal fragments. Each fragment imparts forces to the fragments adjacent to it.
Gravity exerts a downward force on all fragments. Abutments exert an upward force on
the fragments that make up base plates. The wind exerts forces on surface fragments.
To evaluate stress on the bridge as a whole (e.g. to assess its stability and resistance to
failures), a finite element program might divide the metal fragments among a large collection
of threads (probably one per physical processor). Beginning with the external forces, the
program would then proceed through a sequence of iterations. In each iteration each thread
would recompute the forces on its fragments based on the forces found in the previous
iteration. Between iterations, the threads would synchronize with a barrier. The program
would halt when no thread found a significant change in any forces during the last iteration.

The simplest way to implement a busy-wait barrier is to use a globally shared counter,
modified by an atomic fetch and decrement instruction (or equivalently by fetch and

30 CHAPTER 12. CONCURRENCY

shared count : integer := n
shared sense : Boolean := true
per-thread private local sense : Boolean := true

procedure central barrier
local sense := not local sense

–– each thread toggles its own sense
if fetch and decrement (count) = 1

–– last arriving thread
count := n

–– reinitialize for next iteration
sense := local sense

–– allow other threads to proceed
else

repeat
–– spin

until sense = local sense

Figure 12.11: A simple “sense-reversing” barrier. Each thread has its own copy of
local sense. Threads share a single copy of count and sense.

add, LL/SC, etc.). The counter begins at n, the number of threads in the program. As each
thread reaches the barrier it decrements the counter. If it is not the last the arrive, the
thread then spins on a Boolean flag. The final thread (the one that changes the counter
from 1 to 0) flips the Boolean flag, allowing the other threads to proceed. To make it easy
to reuse the barrier data structures in successive iterations (known as barrier episodes),
threads wait for alternating values of the flag each time through. Code for this simple
barrier appears in figure 12.11.

Like a simple spin lock, the “sense-reversing” barrier can lead to unacceptable levels of
contention on large machines. Moreover the serialization of access to the counter implies
that the time to achieve an n-thread barrier is O(n). It is possible to do better, but even the
fastest software barriers require O(logn) time to synchronize n threads [MCS91]. Several
large multiprocessors, including the Thinking Machines CM-5 and the Cray Research T3D
and T3E have provided special hardware for near-constant-time busy-wait barriers.

12.3.2 Scheduler Implementation

To implement user-level threads, OS-level processes must synchronize access to the ready
list and condition queues, generally by means of spinning. Code for a simple reentrant
thread scheduler (one that can be “reentered” safely by a second process before the first
one has returned) appears in figure 12.12. As in the code in section 12.2.4, we disable timer
signals before entering scheduler code, to protect the ready list and condition queues from
concurrent access by a process and its own signal handler.

Our code assumes a single “low-level” lock (scheduler lock) that protects the en-
tire scheduler. Before saving its context block on a queue (e.g. in yield or sleep on), a
thread must acquire the scheduler lock. It must then release the lock after returning from

12.3. SHARED MEMORY 31

shared scheduler lock : low level lock
shared ready list : queue of thread
per-process private current thread : thread

procedure reschedule
–– assume that scheduler lock is already held
–– and that timer signals are disabled
t : thread
loop

t := dequeue (ready list)
if t <> nil

exit
–– else wait for a thread to become runnable
release (scheduler lock)
–– window allows another thread to access ready list
–– (no point in reenabling signals;
–– we’re already trying to switch to a different thread)
acquire (scheduler lock)

transfer (t)
–– caller must release scheduler lock
–– and reenable timer signals after we return

procedure yield
disable signals
acquire (scheduler lock)
enqueue (ready list, current thread)
reschedule
release (scheduler lock)
reenable signals

procedure sleep on (ref Q : queue of thread)
–– assume that has caller already disabled timer signals
–– and acquired scheduler lock, and will reverse
–– these actions when we return
enqueue (Q, current thread)
reschedule

Figure 12.12: Pseudocode for part of a simple reentrant (parallelism-safe) scheduler. Every
process has its own copy of current thread. There is a single shared scheduler lock and
a single ready list. If processes have dedicated processors, then the low level lock can
be an ordinary spin lock; otherwise it can be a “spin-then-yield” lock (figure 12.13). The
loop inside reschedule busy-waits until the ready list is non-empty. The code for sleep on
cannot disable timer signals and acquire the scheduler lock itself, because the caller needs
to test a condition and then block as a single atomic operation.

32 CHAPTER 12. CONCURRENCY

type lock = Boolean := false;

procedure acquire lock (ref L : lock)
while not test and set (L)

count := TIMEOUT
while L count −:= 1

if count = 0
OS yield –– relinquish processor
count := TIMEOUT

procedure release lock (ref L : lock)
L := false

Figure 12.13: A simple spin-then-yield lock, designed for execution on a multiprocessor that
may be multiprogrammed (i.e. on which OS-level processes may be preempted). If unable
to acquire the lock in a fixed, short amount of time, a process calls the OS scheduler to
yield its processor. Hopefully the lock will be available the next time the process runs.

reschedule. Of course, because reschedule calls transfer, the lock will usually be ac-
quired by one thread (the same one that disables timer signals) and released by another (the
same one that reenables timer signals). The code for yield can implement synchronization
itself, because its work is self-contained. The code for sleep on, on the other hand, cannot,
because a thread must generally check a condition and block if necessary as a single atomic
operation:

disable signals
acquire (scheduler lock)
if not desired condition

sleep on (condition queue)
release (scheduler lock)
reenable signals

If the signal and lock operations were moved inside of sleep on, the following race could
arise: thread A checks the condition and finds it to be false; thread B makes the condition
true, but finds the condition queue to be empty; thread A sleeps on the condition queue
forever.

A spin lock will suffice for the “low-level” lock that protects the ready list and condition
queues, so long as every process runs on a different processor. As we noted in section 12.2.1,
however, it makes little sense to spin for a condition that can only be made true by some
other process using the processor on which we are spinning. If we know that we’re running
on a uniprocessor, then we don’t need a lock on the scheduler (just the disabled signals).
If we might be running on a uniprocessor, however, or on a multiprocessor with fewer
processors than processes, then we must be prepared to give up the processor if unable to
obtain a lock. The easiest way to do this is with a “spin-then-yield” lock, first suggested
by Ousterhout [Ous82]. A simple example of such a lock appears in figure 12.13. On
a multiprogrammed machine, it might also be desirable to relinquish the processor inside

12.3. SHARED MEMORY 33

reschedule when the ready list is empty: though no other process of the current application
will be able to do anything, overall system throughput may improve if we allow the operating
system to give the processor to a process from another application.

On a large multiprocessor we might increase concurrency by employing a separate lock
for each condition queue, and another for the ready list. We would have to be careful,
however, to make sure it wasn’t possible for one process to put a thread into a condition
queue (or the ready list) and for another process to attempt to transfer into that thread
before the first process had finished transferring out of it (see exercise 9).

12.3.3 Scheduler-Based Synchronization

The problem with busy-wait synchronization is that it consumes processor cycles, cycles
that are therefore unavailable for other computation. Busy-wait synchronization makes
sense only if (1) one has nothing better to do with the current processor, or (2) the expected
wait time is less than the time that would be required to switch contexts to some other
thread and then switch back again. To ensure acceptable performance on a wide variety of
systems, most concurrent programming languages employ scheduler-based synchronization
mechanisms, which switch to a different thread when the one that was running blocks. In
the remainder of this section we consider the three most common forms of scheduler-based
synchronization: semaphores, monitors, and conditional critical regions.

In each case, scheduler-based synchronization mechanisms remove the waiting thread
from the scheduler’s ready list, returning it only when the awaited condition is true (or is
likely to be true). By contrast, the spin-then-yield lock described in the previous subsection
is still a busy-wait mechanism: the currently running process relinquishes the processor,
but remains on the ready list. It will perform a test and set operation every time it gets
a chance to run, until it finally succeeds. It is worth noting that busy-wait synchronization
is generally “level-independent”—it can be thought of as synchronizing threads, processes,
or processors, as desired. Scheduler-based synchronization is “level-dependent”—it is spe-
cific to threads when implemented in the language run-time system, or to processes when
implemented in the operating system.

We will use a bounded buffer abstraction to illustrate the semantics of various scheduler-
based synchronization mechanisms. A bounded buffer is a concurrent queue of limited size
into which producer threads insert data, and from which consumer threads remove data.
The buffer serves to even out fluctuations in the relative rates of progress of the two classes
of threads, increasing system throughput. A correct implementation of a bounded buffer
requires both mutual exclusion and condition synchronization: the former to ensure that
no thread sees the buffer in an inconsistent state in the middle of some other thread’s
operation; the latter to force consumers to wait when the buffer is empty and producers to
wait when the buffer is full.

Semaphores

Semaphores are the oldest of the scheduler-based synchronization mechanisms. They were
described by Dijkstra in the mid 1960’s [Dij68], and appear in Algol 68. They are still
heavily used today, both in library packages and in languages such as SR and Modula-3.

34 CHAPTER 12. CONCURRENCY

type semaphore = record
N : integer –– usually initialized to something non-negative
Q : queue of threads

procedure P (ref S : semaphore)
disable signals
acquire (scheduler lock)
S.N −:= 1
if S.N < 0

sleep on (S.Q)
release (scheduler lock)
reenable signals

procedure V (ref S : semaphore)
disable signals
acquire (scheduler lock)
S.N +:= 1
if N <= 0

–– at least one thread is waiting
enqueue (ready list, dequeue (S.Q))

release (scheduler lock)
reenable signals

Figure 12.14: Semaphore operations, for use with the scheduler code of figure 12.12.

A semaphore is basically a counter with two associated operations, P and V.3 A thread
that calls P atomically decrements the counter and then waits until it is non-negative. A
thread that calls V atomically increments the counter and wakes up a waiting thread, if
any. It is generally assumed that semaphores are fair, in the sense that threads complete P
operations in the same order they start them. Implementations of P and V in terms of our
scheduler operations appear in figure 12.14.

A semaphore whose counter is initialized to one and for which P and V operations
always occur in matched pairs is known as a binary semaphore. It serves as a scheduler-
based mutual exclusion lock: the P operation acquires the lock; V releases it. More generally,
a semaphore whose counter is initialized to k can be used to arbitrate access to k copies
of some resource. The value of the counter at any particular time is always k more than
the difference between the number of P operations (#P) and the number of V operations
(#V) that have occurred so far in the program. A P operation blocks the caller until #P

≤ #V + k. Exercise 16 notes that binary semaphores can be used to implement general
semaphores, so the two are of equal expressive power, if not of equal convenience.

Figure 12.15 shows a semaphore-based solution to the bounded buffer problem. It uses
a binary semaphore for mutual exclusion, and two general (or counting) semaphores for

3P and V stand for the Dutch words passeren (to pass) and vrygeren (to release). To keep them straight,
speakers of English may wish to think of P as standing for “pause”, since a thread will pause at a P operation
if the semaphore count is negative. Algol 68 calls the P and V operations down and up, respectively.

12.3. SHARED MEMORY 35

shared buf : array [1..SIZE] of bdata
shared next full, next empty : integer := 1, 1
shared mutex : semaphore := 1
shared empty slots, full slots : semaphore := SIZE, 0

procedure insert (d : bdata)
P (empty slots)
P (mutex)
buf[next empty] := d
next empty := next empty mod SIZE + 1
V (mutex)
V (full slots)

function remove : bdata
P (full slots)
P (mutex)
d : bdata := buf[next full]
next full := next full mod SIZE + 1
V (mutex)
V (empty slots)
return d

Figure 12.15: Semaphore-based code for a bounded buffer. The mutex binary semaphore
protects the data structure proper. The full slots and empty slots general semaphores
ensure that no operation starts until it is safe to do so.

condition synchronization. Exercise 12 considers the use of semaphores to construct an
n-thread barrier.

Monitors

Though widely used, semaphores are also widely considered to be too “low-level” for well-
structured, maintainable code. They suffer from two principal problems. First, because
they are simply subroutine calls, it is easy to leave one out, e.g. on a control path with
several nested if statements. Second, unless they are hidden inside an abstraction, uses of
a given semaphore tend to get scattered throughout a program, making it difficult to track
them down for purposes of software maintenance.

Monitors were suggested by Dijkstra [Dij72] as a solution to these problems. They were
developed more thoroughly by Brinch Hansen [Bri73], and formalized by Hoare [Hoa74] in
the early 1970’s. They have been incorporated into at least a score of languages, of which
Concurrent Pascal [Bri75], Modula (1) [Wir77b], and Mesa [LR80] have probably been the
most influential.

A monitor is a module or object with operations, internal state, and a number of con-
dition variables. Only one operation of a given monitor is allowed to be active at a given
point in time. A thread that calls a busy monitor is automatically delayed until the monitor
is free. On behalf of its calling thread, any operation may suspend itself by wait ing on a

36 CHAPTER 12. CONCURRENCY

condition variable. An operation may also signal a condition variable, in which case one of
the waiting threads is resumed, usually the one that waited first.

Because the operations (entries) of a monitor automatically exclude one another in
time, the programmer is relieved of the responsibility of using P and V operations correctly.
Moreover because the monitor is an abstraction, all operations on the encapsulated data,
including synchronization, are collected together in one place. Hoare defined his monitors
in terms of semaphores. Conversely, it is easy to define semaphores in terms of monitors
(exercise 15). Together, the two definitions prove that semaphores and monitors are equally
powerful: each can express all forms of synchronization expressible with the other.

Hoare’s definition of monitors employs one thread queue for every condition variable,
plus two bookkeeping queues: the entry queue and the urgent queue. A thread that attempts
to enter a busy monitor waits in the entry queue. When a thread executes a signal
operation fromwithin a monitor, and some other thread is waiting on the specified condition,
then the signaling thread waits on the monitor’s urgent queue and the first thread on the
appropriate condition queue obtains control of the monitor. If no thread is waiting on the
signaled condition, then the signal operation is a no-op. When a thread leaves a monitor,
either by completing its operation or by waiting on a condition, it unblocks the first thread
on the urgent queue or, if the urgent queue is empty, the first thread on the entry queue, if
any.

Figure 12.16 shows a monitor-based solution to the bounded buffer problem. It is worth
emphasizing that monitor condition variables are not the same as semaphores. Specifically,
they have no “memory”: if no thread is waiting on a condition at the time that a signal
occurs, then the signal has no effect. Whereas a V operation on a semaphore increments the
semaphore’s counter, allowing some future P operation to succeed, an un-awaited signal
on a condition variable is lost.

Correctness for monitors depends on the notion of a monitor invariant. The invariant
is a predicate that captures the notion that “the state of the monitor is consistent”. The
invariant needs to be true initially, and at monitor exit. It also needs to be true at every
wait statement and, in a Hoare monitor, at signal operations as well. For our bounded
buffer example, a suitable invariant would assert that full slots correctly indicates the
number of items in the buffer, and that those items lie in slots numbered next full through
next empty - 1 (mod SIZE). Careful inspection of the code in figure 12.16 reveals that the
invariant does indeed hold initially, and that anytime we modify one of the variables men-
tioned in the invariant, we always modify the others accordingly before waiting, signaling,
or returning from an entry.

The semantic details of monitors vary significantly from one language to the next. The
two principal areas of variation are the semantics of the signal operation and the man-
agement of mutual exclusion when a thread waits inside a nested sequence of two or more
monitor calls.

In general, one signals a condition variable when some condition on which a thread
may be waiting has become true. If we want to guarantee that the condition is still true
when the thread wakes up, then we need to switch to the thread as soon as the signal
occurs—hence the need for the urgent queue, and the need to ensure the monitor invariant at
signal operations. In practice, switching contexts on a signal tends to induce unnecessary
scheduling overhead: a signaling thread seldom changes the condition associated with the
signal during the remainder of its operation. To reduce the overhead, and to eliminate

12.3. SHARED MEMORY 37

monitor bounded buf
imports bdata, SIZE
exports insert, remove

buf : array [1..SIZE] of data
next full, next empty : integer := 1, 1
full slots : integer := 0
full slot, empty slot : condition

entry insert (d : bdata)
if full slots = SIZE

wait (empty slot)
buf[next empty] := d
next empty := next empty mod SIZE + 1
full slots −:= 1
signal (full slot)

entry remove : bdata
if full slots = 0

wait (full slot)
d : bdata := buf[next full]
next full := next full mod SIZE + 1
full slots +:= 1
signal (empty slot)
return d

Figure 12.16: Monitor-based code for a bounded buffer. Insert and remove are entry
subroutines: they require exclusive access to the monitor’s data. Because conditions are
memory-less, both insert and remove can safely end their operation by generating a
signal.

the need to ensure the monitor invariant, Mesa specifies that signals are only hints : the
language run-time system moves some waiting thread to the ready list, but the signaler
retains control of the monitor, and the waiter must recheck the condition when it awakes.
In effect, the standard idiom

if not desired condition
wait (condition variable)

in a Hoare monitor becomes

while not desired condition
wait (condition variable)

in a Mesa monitor. Modula-3 takes a similar approach. An alternative appears in Concur-
rent Pascal, which specifies that a signal operation causes an immediate return from the
monitor operation in which it appears. This rule keeps overhead low, and also preserves

38 CHAPTER 12. CONCURRENCY

invariants, but precludes algorithms in which a thread does useful work in a monitor after
signaling a condition.

In most monitor languages, a wait in a nested sequence of monitor operations will re-
lease mutual exclusion on the innermost monitor, but will leave the outer monitors locked.
This situation can lead to deadlock if the only way for another thread to reach a corre-
sponding signal operation is through the same outer monitor(s). In general, we use the
term “deadlock” to describe any situation in which a collection of threads are all waiting
for each other, and none of them can proceed. In this specific case, the thread that entered
the outer monitor first is waiting for the second thread to execute a signal operation; the
second thread, however, is waiting for the first to leave the monitor. Several monitor im-
plementations for uniprocessors (including the original Modula implementation [Wir77a])
avoid the nested monitor problem by providing mutual exclusion across all operations of
all monitors, releasing exclusion on all of them when a wait occurs.

Conditional Critical Regions

Conditional critical regions are another alternative to semaphores, proposed by Brinch
Hansen at about the same time as monitors [Bri73]. A critical region is a syntactically
delimited critical section in which code is permitted to access a protected variable. A
conditional critical region also specifies a Boolean condition, which must be true before
control will enter the region:

region protected variable when Boolean condition do
. . .

end region

No thread can access a protected variable except within a region statement for that vari-
able, and any thread that reaches a region statement waits until the condition is true and
no other thread is currently in a region for the same variable. Regions can nest, though as
with nested monitor calls, the programmer needs to worry about deadlock. Figure 12.17
uses conditional critical regions to implement a bounded buffer.

Conditional critical regions avoid the question of signal semantics, because they use
explicit Boolean conditions instead of condition variables, and because conditions can only
be awaited at the beginning of critical regions. At the same time, they introduce potentially
significant inefficiency. In the general case, the code used to exit a conditional critical region
must tentatively resume each waiting thread, allowing that thread to recheck its condition in
its own referencing environment. Optimizations are possible in certain special cases (e.g. for
conditions that depend only on global variables, or that consist of only a single Boolean
variable), but in the worst case it may be necessary to perform context switches in and out
of every waiting thread on every exit from a region.

Conditional critical regions appear in the concurrent language Edison [Bri81], and also
seem to have influenced the synchronization mechanisms of Ada 95 and Java. Both of these
latter languages might be said to blend the features of monitors and conditional critical
regions, albeit in different ways.

The principal mechanism for synchronization in Ada, introduced in Ada 83, is based on
message passing; we will describe it in section 12.4 below. Ada 95 augments this mechanism

12.3. SHARED MEMORY 39

buffer : record
buf : array [1..SIZE] of data
next full, next empty : integer := 1, 1
full slots : integer := 0

procedure insert (d : bdata)
region buffer when full slots < SIZE

buf[next empty] := d
next empty := next empty mod SIZE + 1
full slots −:= 1

function remove : bdata
region buffer when full slots > 0

d : bdata := buf[next full]
next full := next full mod SIZE + 1
full slots +:= 1

return d

Figure 12.17: Conditional critical regions for a bounded buffer. Boolean conditions on the
region statements eliminate the need for explicit condition variables.

with a notion of protected object. A protected object can have three types of member
subroutines: functions, procedures, and entries. Functions can only read the data members
of the object; procedures and entries can read and write them. An implicit reader-writer
lock on the protected object ensures that potentially conflicting operations exclude one
another in time: a procedure or entry obtains exclusive access to the object; a function can
operate concurrently with other functions, but not with a procedure or entry.

Procedures and entries differ from one another in two important ways. First, an entry
can have a Boolean expression guard, for which the calling task (thread) will wait before
beginning execution (much as it would for the condition of a conditional critical region).
Second, an entry supports three special forms of call: timed calls, which abort after waiting
for a specified amount of time, conditional calls, which execute alternative code if the call
cannot proceed immediately, and asynchronous calls, which begin executing alternative code
immediately, but abort it if the call is able to proceed before the alternative completes.

In comparison to the conditions of conditional critical regions, the guards on entries of
protected objects in Ada 95 admit a more efficient implementation, because they do not
have to be evaluated in the context of the calling thread. Moreover, because all guards are
gathered together in the definition of the protected object, the compiler can generate code
to test them as a group as efficiently as possible, in a manner suggested by Kessels [Kes77].
Though an Ada task cannot wait on a condition in the middle of an entry (only at the
beginning), it can requeue itself on another entry, achieving much the same effect.

In Java, every object accessible to more than one thread has an implicit mutual exclusion
lock, acquired and released by means of synchronized statements:

40 CHAPTER 12. CONCURRENCY

synchronized (my_shared_obj) {
... // critical section

}

All executions of synchronized statements that refer to the same shared object exclude
one another in time. Synchronized statements that refer to different objects may proceed
concurrently. As a form of syntactic sugar, a member function of a class may be prefixed
with the synchronized keyword, in which case the body of the method is considered to
have been surrounded by an implicit synchronized (this) statement. Invocations of non-
synchronized methods of a shared object—and direct accesses to public data members—can
proceed concurrently with each other, or with synchronized statements or methods.

Within a synchronized statement or method, a thread can suspend itself by calling the
predefined method wait. Wait has no arguments in Java: the language does not distinguish
among the different reasons why threads may be suspended on a given object. As in Mesa,
Java programs typically embed the use of wait within a condition-testing loop:

while (!condition) {
wait ();

}

A thread that calls the wait method of an object releases the object’s lock. With nested
synchronized statements, however, or with nested calls to synchronized methods, the
thread does not release locks on any other objects.

To resume a thread that is suspended on a given object, some other thread must execute
the predefined methomethod notify from within a synchronized statement or method
that refers to the same object. Like wait, notify has no arguments. In response to a
notify call, the language run-time system picks an arbitrary thread suspended on the
object and makes it runnable. If there are no such threads then the notify is a no-op.
In some situations, it may be appropriate to awaken all threads waiting in a given object.
Java provides a built-in notifyAll function for this purpose.

It is important to realize when a notify occurs that the choice among waiting threads
is arbitrary. If threads are waiting for more than one condition (i.e. if their waits are
embedded in dissimilar loops), there is no guarantee that the “right” thread will awaken.
To ensure that an appropriate thread does wake up, the programmer may choose to use
notifyAll instead of notify. To ensure that only one thread continues, the first thread
to discover that its condition has been satisfied must modify the state of the object in such
a way that other awakened threads, when they get to run, will simply go back to sleep.
Unfortunately, since all waiting threads will end up reevaluating their conditions every time
one of them can run, this “solution” to the multiple-condition problem can be prohibitively
expensive. In general, Java programmers tend to look for algorithms in which there are
never threads waiting for more than one condition within a given object.

Java objects that use only synchronized methods (no other synchronized statements)
closely resemble Mesa monitors in which there is a limit of one condition variable per
monitor. By the same token, a synchronized statement in Java that begins with a wait
in a loop resembles a conditional critical region in which the retesting of conditions has
been made explicit. Because notify also is explicit, a Java program need not reevaluate

12.3. SHARED MEMORY 41

conditions on every exit from a critical section—only those in which a notify occurs.
It turns out to be possible (see exercise 19) to solve completely general synchronization
problems with conditional critical regions in which all threads wait for the same condition.
If the programmer chooses, however—either with conditional critical regions or in Java—to
have threads wait for more than one condition of the same object at the same time, then
execution may cycle through an arbitrary number of threads before one of them finds that it
is able to continue. The optimizations possible in Ada 95 do not generally apply: conditions
must be evaluated in the context of the waiting thread.

Ada 95 code for a bounded buffer would closely resemble the pseudocode of figure 12.17.
Java code would use waits within while loops in place of syntactically distinguished
Boolean guards. Java code would also end each insert or remove operation with an
explicit notify. We leave the details as an exercise (20).

12.3.4 Implicit Synchronization

In several shared-memory languages, the operations that threads can perform on shared data
are restricted in such a way that synchronization can be implicit in the operations them-
selves, rather than appearing as separate, explicit operations. We have seen one example of
implicit synchronization already: the forall loop of HPF and Fortran 95 (section 12.2.3,
page 16). Separate iterations of a forall loop proceed concurrently, semantically in lock-
step with each other: each iteration reads all data used in its instance of the first assignment
statement before any iteration updates its instance of the left-hand side. The left-hand side
updates in turn occur before any iteration reads the data used in its instance of the second
assignment statement, and so on. Compilation of forall loops for vector machines, while
far from trivial, is more-or-less straightforward. On a more conventional multiprocessor,
however, good performance usually depends on high-quality dependence analysis, which al-
lows the compiler to identify situations in which statements within a loop do not in fact
depend on one another, and can proceed without synchronization.

Dependence analysis plays a crucial role in other languages as well. In section 6.6.1 we
mentioned Sisal, a purely functional language with Pascal-like syntax (recall that iterative
constructs in Sisal are syntactic sugar for tail recursion). Because Sisal is side-effect free, its
constructs can be evaluated in any order—or concurrently—so long as no construct attempts
to use a value that has yet to be computed. The Sisal implementation developed at Lawrence
Livermore National Lab uses extensive compiler analysis to identify promising constructs for
parallel execution. It also employs tags on data objects that indicate whether the object’s
value has been computed yet. When the compiler is unable to guarantee that a value will
have been computed by the time it is needed at run time, the generated code uses tag
bits for synchronization, spinning or blocking until they are properly set. Sisal’s developers
claim [Can92] that their language and compiler rival parallel Fortran in performance.

In a less ambitious vein, the Multilisp [Hal85, MKH91] dialect of Scheme allows the
programmer to enclose any function evaluation in a special future construct:

(future (my-function my-args))

In a purely functional program, future is semantically neutral: program behavior will
be exactly the same as if (my-function my-args) had appeared without the surrounding
call. In the implementation, however, future arranges for the embedded function to be

42 CHAPTER 12. CONCURRENCY

evaluated by a separate thread of control. The parent thread continues to execute until it
actually tries to use the return value of my-function, at which point it waits for execution
of the future to complete. If two or more arguments to a function are enclosed in futures,
then evaluation of the arguments can proceed in parallel:

(parent-func (future (child-1 args-1)) (future (child-2 args-2)))

In a program that uses the imperative features of Scheme, the programmer must take care
to make sure that concurrent execution of futures will not compromise program correct-
ness. There are no additional synchronization mechanisms: future itself is Multilisp’s only
addition to Scheme.

Both Multilisp and Sisal employ the same basic idea: concurrent evaluation of functions
in a side-effect-free language. Where the Sisal compiler attempts to find code fragments
that can profitably be executed in parallel, the Multilisp programmer must identify them
explicitly. In both languages, the synchronization required to delay a thread that attempts
to use a yet-to-be-computed value is implicit. In some ways the future construct resembles
the built-in delay and force of Scheme (section 6.6.2). Where future supports concur-
rency, delay supports lazy evaluation: it defers evaluation of its embedded function until
the return value is known to be needed. Any use of a delayed expression in Scheme must
be surrounded by force. By contrast, synchronization on a future is implicit: there is no
analog of force.

Several researchers have noted that the backtracking search of logic languages such as
Prolog is also amenable to parallelization. Two strategies are possible. The first is to
pursue in parallel the subgoals found in the right-hand side of a rule. This strategy is
known as AND parallelism. The fact that variables in logic, once initialized, are never
subsequently modified ensures that parallel branches of an AND cannot interfere with one
another. The second strategy is known as OR parallelism; it pursues alternative resolutions
in parallel. Because they will generally employ different unifications, branches of an OR
must use separate copies of their variables. In a search tree such as that of figure 11.4
(page ??), AND parallelism and OR parallelism create new threads at alternating levels.

OR parallelism is speculative: since success is required on only one branch, work per-
formed on other branches is in some sense wasted. OR parallelism works well, however,
when in a goal cannot be satisfied (in which case the entire tree must be searched), or when
there is high variance in the amount of execution time required to satisfy a goal in different
ways (in which case exploring several branches at once reduces the expected time to find
the first solution). Both AND and OR parallelism are problematic in Prolog, because they
fail to adhere to the deterministic search order required by language semantics.

Some of the ideas embodied in concurrent functional languages can be adapted to im-
perative languages as well. CC++ [Fos95], for example, is a concurrent extension to C++
in which synchronization is implicit in the use of single-assignment variables. To declare
a single-assignment variable, the CC++ programmer prepends the keyword synch to an
ordinary variable declaration. The value of a synch variable is initially undefined. A thread
that attempts to read the variable will wait until it is assigned a value by some other thread.
It is a run-time error for any thread to attempt to assign to a synch variable that already
has a value.

In a similar vein, Linda [ACG86] is a set of concurrent programming mechanisms that
can be embedded into almost any imperative language. It consists of a set of subroutines

12.4. MESSAGE PASSING 43

that manipulate a shared abstraction called the tuple space. The elements of tuple space
resemble the tuples of ML (section 7.2.5), except that they have single assignment semantics,
and are accessed associatively by content, rather than by name. The in procedure adds
a tuple to the tuple space. The out procedure extracts a tuple that matches a specified
pattern, waiting if no such tuple currently exists. The read procedure is a non-destructive
out. A special form of in forks a concurrent thread to calculate the value to be inserted,
much like a future in Multilisp. All three subroutines can be supported as ordinary library
calls, but performance is substantially better when using a specially designed compiler that
generates optimized code for commonly occurring patterns of tuple space operations.

A few multiprocessors, including the Denelcor HEP [Jor85] and the forthcoming Tera
machine [ACC+90], provide special hardware support for single-assignment variables in
the form of so-called full-empty bits. Each memory location contains a bit that indicates
whether the variable in that location has been initialized. Any attempt to access an unini-
tialized variable stalls the current processor, causing it to switch contexts (in hardware) to
another thread of control.

12.4 Message Passing

While shared-memory concurrent programming is common on small-scale multiprocessors,
most concurrent programming on large multicomputers and networks is currently based on
messages. In sections 12.4.1 through 12.4.3 we consider three principal issues in message-
based computing: naming, sending, and receiving. In section 12.4.4 we look more closely
at one particular combination of send and receive semantics, namely remote procedure call.
Most of our examples will be drawn from the Ada, Occam, and SR programming languages,
the Java network library, and the PVM and MPI library packages.

12.4.1 Naming Communication Partners

To send or receive a message, one must generally specify where to send it to, or where to
receive it from—communication partners need names for (or references to) one another.
Names may refer directly to a thread or process. Alternatively, they may refer to an entry
or port of a module, or to some sort of socket or channel abstraction. We illustrate these
options in figure 12.18.

The first naming option—addressing messages to processes—appears in Hoare’s original
CSP proposal, and in PVM and MPI. Each PVM or MPI process has a unique id (an
integer), and each send or receive operation specifies the id of the communication partner.
MPI implementations are required to be reentrant; a process can safely be divided into
multiple threads, each of which can send or receive messages on the process’s behalf. PVM
has hidden state variables that are not automatically synchronized, making threaded PVM
programs problematic.

The second naming option—addressing messages to ports—appears in Ada. An Ada
entry call of the form t.foo (args) sends a message to the entry named foo in task
(thread) t (t may be either a task name or the name of a variable whose value is a pointer
to a task). As we saw in section 12.2.3, an Ada task resembles a module; its entries resemble
subroutine headers nested directly inside the task. A task receives a message that has been
sent to one of its entries by executing an accept statement (to be discussed in section 12.4.3

44 CHAPTER 12. CONCURRENCY

(a)

(b)
(c)

Figure 12.18: Three common schemes to name communication partners. In (a), processes
name each other explicitly. In (b), senders name an input port of a receiver. The port may
be called an entry or an operation. The receiver is typically a module with one or more
threads inside. In (c), senders and receivers both name an independent channel abstraction,
which may be called a connection or a mailbox.

below). Every entry belongs to exactly one task; all messages sent to the same entry must
be received by that one task.

The third naming option—addressing messages to channels—appears in Occam (though
not in CSP). Channel declarations are supported with the built-in CHAN and CALL types:

CHAN OF BYTE stream :
CALL lookup (RESULT [36]BYTE name, VAL INT ssn) :

These declarations specify a one-directional channel named stream that carries messages
of type BYTE and a two-directional channel named lookup that carries requests containing
an integer named ssn and replies containing a 36-byte string named name. CALL channels
are syntactic sugar for a pair of CHAN channels, one in each direction. To send a message
on a CHAN channel, an Occam thread uses a special “exclamation point” operator:

stream ! ’x’

To send a message (and receive a reply) on a CALL channel, a thread uses syntax that
resembles a subroutine call:

lookup (name, 123456789)

We noted in section 12.2.3 (“parallel loops”) that language rules in Occam prohibit
concurrent threads from making conflicting accesses to the same variable. For channels, the
basic rule is that exactly one thread may send to a channel, and exactly one may receive from
it. (For CALL channels, exactly one thread may send requests, and exactly one may accept
them and send replies). These rules are relaxed in Occam 3 to permit SHARED channels,
which provide a mutual exclusion mechanism. Only one thread may accept requests over
a SHARED CALL channel, but multiple threads may send them. In a similar vein, multiple
threads may CLAIM a set of CHAN channels for exclusive use in a critical section, but only
one thread may GRANT those channels; it serves as the other party for every message sent
or received.

12.4. MESSAGE PASSING 45

In SR and the Internet libraries of Java we see combinations of our naming options. An
SR program executes on a collection of one or more virtual machines, each of which has a
separate address space, and may be implemented on a separate node of a network. Within a
virtual machine, messages are sent to (and received from) a channel-like abstraction called
an op. Unlike an Occam channel, an SR op has no restrictions on the number or identity of
sending and receiving threads: any thread that can see an op under the usual lexical scoping
rules can send to it or receive from it. A receive operation must name its op explicitly;
a send operation may do so also, or it may use a capability variable. A capability is like
a pointer to an op, except that pointers work only within a given virtual machine, while
capabilities work across the boundaries between them. Aside from start-up parameters
and possibly I/O, capabilities provide the only means of communicating among separate
virtual machines. At the outermost level, then, an SR program can be seen as having a
port-like naming scheme: messages are sent (via capabilities) to ops of virtual machines,
within which they may potentially be received by any local thread.

Java’s standard java.net library provides two styles of message passing, corresponding
to the UDP and TCP Internet protocols. UDP is the simpler of the two. It is a datagram
protocol, meaning that each message is sent to its destination independently and unreliably.
The network software will attempt to deliver it, but makes no guarantees. Moreover two
messages sent to the same destination (assuming they both arrive) may arrive in either
order. UDP messages use port-based naming (option (b) in figure 12.18): each message is
sent to a specific Internet address and port number.4 The TCP protocol also uses port-based
naming, but only for the purpose of establishing connections (option (c) in figure 12.18),
which it then uses for all subsequent communication. Connections deliver messages reliably
and in order.

To send or receive UDP messages, a Java thread must create a datagram socket :

DatagramSocket my_socket = new DatagramSocket(port_id);

The parameter of the DatagramSocket constructor is optional; if it is not specified, the
operating system will choose an available port. Typically servers specify a port and clients
allow the OS to choose. To send a UDP message, a thread says

DatagramPacket my_msg = new DatagramPacket (buf, len, addr, port);
... // initialize message
my_socket.send (my_msg);

The parameters to the DatagramPacket constructor specify an array of bytes buf, its length
len, and the Internet address and port of the receiver.

For TCP communication, a server typically “listens” on a port to which clients send
requests to establish a connection:

4Every machine on the Internet has its own unique address. As of 1999, addresses are 32-bit integers,
usually printed as four period-separated fields (e.g. 192.5.54.209). Internet name servers translate symbolic
names (e.g. gate.cs.rochester.edu) into numeric addresses. Port numbers are also integers, but are local
to a given Internet address. Ports 1024 through 4999 are generally available for application programs; larger
and smaller numbers are reserved for servers.

46 CHAPTER 12. CONCURRENCY

ServerSocket my_server_socket = new ServerSocket(port_id);
Socket client_connection = my_server_socket.accept();

The accept operation blocks until the server receives a connection request from a client.
Typically a server will immediately fork a new thread to communicate with the client; the
parent thread loops back to wait for another connection with accept.

A client sends a connection request by passing the server’s symbolic name and port
number to the Socket constructor:

Socket server_connection = new Socket (host_name, port_id);

Once a connection has been created, a client and server in Java typically call member
functions of the Socket class to create input and output streams, which support all of the
standard Java mechanisms for text I/O (section 7.9.3):

DataInputStream in =
new DataInputStream(client_connection.getInputStream());

PrintStream out =
new PrintStream(client_connection.getOutputStream());

// This is in the server; the client would make streams out
// of server_connection.
...
String s = in.readLine();
out.println ("Hi, Mom\n");

Among all the message-passing mechanisms we have considered, datagrams are the only
one that does not provide some sort of ordering constraint. In general, most message-
passing systems guarantee that messages sent over the same “communication path” arrive
in order. When naming processes explicitly, a path links a single sender to a single receiver.
All messages from that sender to that receiver arrive in the order sent. When naming ports,
a path links an arbitrary number of senders to a single receiver (though as we saw in SR,
if a receiver is a complex entity like a virtual machine, it may have many threads inside).
Messages that arrive at a port in a given order will be seen by receivers in that order. Note,
however, that while messages from the same sender will arrive at a port in order, messages
from different senders may arrive in different orders.5 When naming channels, a path links
all the senders that can use the channel to all the receivers that can use it. A Java TCP
connection has a single OS process at each end, but there may be many threads inside, each
of which can use its process’s end of the connection. An SR op can be used by any thread
to which it is visible. In both cases, the channel functions as a queue: send (enqueue) and
receive (dequeue) operations are ordered, so that everything is received in the order it was
sent.

5Suppose, for example, that process A sends a message to port p of process B, and then sends a message
to process C, while process C first receives the message from A and then sends its own message to port p
of B. If messages are sent over a network with internal delays, and if A is allowed to send its message to C
before its first message has reached port p, then it is possible for B to hear from C before it hears from A.
This apparent reversal of ordering could easily happen on the Internet, for example, if the message from A
to B traverses a satellite link, while the messages from A to C and from C to B use ocean-floor cables.

12.4. MESSAGE PASSING 47

12.4.2 Sending

One of the most important issues to be addressed when designing a send operation is the
extent to which it may block the caller: once a thread has initiated a send operation, when
is it allowed to continue execution? Blocking can serve at least three purposes:

resource management: A sending thread should not modify outgoing data until the underly-
ing system has copied the old values to a safe location. Most systems block the sender
until a point at which it can safely modify its data, without danger of corrupting the
outgoing message.

failure semantics: Particularly when communicating over a long-distance network, message
passing is more error-prone than most other aspects of computing. Many systems
block a sender until they are able to guarantee that the message will be delivered
without error.

return parameters: In many cases a message constitutes a request, for which a reply is
expected. Many systems block a sender until a reply has been received.

When deciding how long to block, we must consider synchronization semantics, buffering
requirements, and the reporting of run-time errors.

Synchronization semantics

On its way from a sender to a receiver, a message may pass through many intermediate
steps, particularly if traversing the Internet. It first descends through several layers of
software on the sender’s machine, then through a potentially large number of intermediate
machines, and finally up through several layers of software on the receiver’s machine. We
could imagine unblocking the sender after any of these steps, but most of the options would
be indistinguishable in terms of user-level program behavior. If we assume for the moment
that a message-passing system can always find buffer space to hold an outgoing message,
then our three rationales for delay suggest three principal semantic options:

no-wait send: The sender does not block for more than a small, bounded period of time.
The message-passing implementation copies the message to a safe location and takes
responsibility for its delivery.

synchronization send: The sender waits until its message has been received.

remote-invocation send: The sender waits until it receives a reply.

These three alternatives are illustrated in figure 12.19. No-wait send appears in SR and
in the Java Internet library. Synchronization send appears in Occam. Remote-invocation
send appears in SR, Occam, and Ada. PVM and MPI provide an implementation-oriented
hybrid of no-wait send and synchronization send: a send operation blocks until the data
in the outgoing message can safely be modified. In implementations that do their own
internal buffering, this rule amounts to no-wait send. In other implementations, it amounts
to synchronization send. PVM programs must be written to cope with the latter, more
restrictive option. In MPI, the programmer has the option, if desired, to insist on no-wait
send or synchronization send; performance may suffer on some systems if the request is
different from the default.

48 CHAPTER 12. CONCURRENCY

(a) (b)

send send request

receive

(c)

receive receive

reply

Figure 12.19: Synchronization semantics for the send operation: (a) no-wait send; (b)
synchronization send; (c) remote-invocation send. In each diagram we have assumed that
the original message arrives before the receiver executes its receive operation; this need
not in general be the case.

Buffering

In practice, unfortunately, no message-passing system can provide a version of send that
never waits (unless of course it simply throws some messages away). If we imagine a thread
that sits in a loop sending messages to a thread that never receives them, we quickly see that
unlimited amounts of buffer space would be required. At some point, any implementation
must be prepared to block an overactive sender, to keep it from overwhelming the system.
For any fixed amount of buffer space, it is possible to design a program that requires a larger
amount of space to run correctly. Imagine, for example, that the message-passing system is
able to buffer n messages on a given communication path. Now imagine a program in which
A sends n + 1 messages to B, followed by one message to C. C then sends one message
to B, on a different communication path. For its part, B insists on receiving the message
from C before receiving the messages from A. If A blocks after message n, implementation-
dependent deadlock will result. The best that an implementation can do is to provide a
sufficiently large amount of space that realistic applications are unlikely to find the limit to
be a problem.

For synchronization send and remote-invocation send, buffer space is not generally a
problem: the total amount of space required for messages is bounded by the number of
threads, and there are already likely to be limits on how many threads a program can
create. A thread that sends a reply message can always be permitted to proceed: we know
that we shall be able to reuse the buffer space quickly, because the thread that sent the
request is already waiting for the reply.

Error reporting

In addition to limits on buffering, no-wait send suffers from the problem of error reporting.
As long as the sender is blocked, errors that occur in attempting to deliver a message can be
reflected back as exceptions, or as status information in result parameters or global variables.
Once a sender has continued, there is no obvious way in which to report any problems that

12.4. MESSAGE PASSING 49

arise. For UDP, the solution is to state that messages are unreliable: if something goes
wrong, the message is simply lost, silently. For TCP, the “solution” is to state that only
“catastrophic” errors will cause a message to be lost, in which case the connection will
become unusable and future calls will fail immediately. An even more drastic approach
is taken in MPI: certain implementation-specific errors may be detected and handled at
run time, but in general if a message cannot be delivered then the program as a whole is
considered to have failed. PVM provides a notification mechanism that will send a message
to a previously designated process in the event of a node or process failure. The designated
process can then abort any related, dependent processes, start new processes to pick up the
work of those that failed, etc.

Emulation of alternatives

All three varieties of send can be emulated by the others. To obtain the effect of remote-
invocation send, a thread can follow a no-wait send of a request with a receive of the
reply. Similar code will allow us to emulate remote-invocation send using synchronization
send. To obtain the effect of synchronization send, a thread can follow a no-wait send
with a receive of an acknowledgment message, which the receiver will send immediately
upon receipt of the original message. To obtain the effect of synchronization send using
remote-invocation send, a thread that receives a request can simply reply immediately,
with no return parameters.

To obtain the effect of no-wait send using synchronization send or remote-invocation
send, we must interpose a buffer process (the message-passing analogue of our shared-
memory bounded buffer) that replies immediately to “senders” or “receivers” whenever
possible. The space available in the buffer process makes explicit the resource limitations
that are always present below the surface in implementations of no-wait send.

Unfortunately, user-level emulations of alternative send semantics are seldom as efficient
as optimized implementations using the underlying primitives. Suppose for example that
we wish to use remote-invocation send to emulate synchronization send. Suppose further
that our implementation of remote-invocation send is built on top of network software that
does not guarantee message delivery (we might perhaps have an implementation of Ada on
top of UDP). In this situation the language run-time system is likely to employ hidden ac-
knowledgment messages: after sending an (unreliable) request, the client’s run-time system
will wait for an acknowledgment from the server (figure 12.20). If the acknowledgment does
not appear within a bounded interval of time, then the run-time system will retransmit the
request. After sending a reply, the server’s run-time system will wait for an acknowledg-
ment from the client. If a server thread can work for an arbitrary amount of time before
sending a reply, then the run-time system will need to send separate acknowledgments for
the request and the reply. If a programmer uses this implementation of remote-invocation
send to emulate synchronization send, then the underlying network may end up transmit-
ting a total of four messages (more if there are any transmission errors). By contrast, a
“native” implementation of synchronization send would require only two underlying mes-
sages. In some cases the run-time system for remote-invocation send may be able to delay
transmission of the first acknowledgment long enough to “piggy-back” it on the subsequent
reply if there is one; in this case an emulation of synchronization send may transmit three

50 CHAPTER 12. CONCURRENCY

Sender Receiver

message

ack

Client Server

request

ack

ack

reply
...

Figure 12.20: Acknowledgment messages. If the underlying message-passing system is unre-
liable, a language or library can provide reliability by waiting for acknowledgment messages,
and resending if they don’t appear within a reasonable amount of time. In the absence of
piggy-backing, remote-invocation send (left) may require four underlying messages; syn-
chronization send (right) may require two.

underlying messages instead of only two. We consider the efficiency of emulations further
in exercises 26 and 29.

Syntax and language integration

In the emulation examples above, our hypothetical syntax assumed a library-based imple-
mentation of message passing. Because send, receive, accept, etc. are ordinary subrou-
tines in such an implementation, they take a fixed, static number of parameters, two of
which typically specify the location and size of the message to be sent. To send a message
containing values held in more than one program variable, the programmer must explicitly
gather, or marshal, those values into the fields of a record. On the receiving end, the pro-
grammer must scatter (un-marshal) the values back into program variables. By contrast,
a concurrent programming language can provide message-passing operations whose “argu-
ment” lists can include an arbitrary number of values to be sent. Moreover, the compiler
can arrange to perform type checking on those values, using techniques similar to those
employed for subroutine linkage across compilation units (as described in section 9.6.2).
Finally, as we will see in section 12.4.3, an explicitly concurrent language can employ non-
procedure-call syntax, e.g. to couple a remote-invocation accept and reply in such a way
that the reply doesn’t need to explicitly identify the accept to which it corresponds.

12.4.3 Receiving

Probably the most important dimension on which to categorize mechanisms for receiving
messages is the distinction between explicit receive operations and the implicit receipt
described in section 12.2.3 (page 20). Among the languages and systems we have been
using as examples, only SR provides implicit receipt (some RPC systems also provide it, as
we shall see in section 12.4.4 below).

With implicit receipt, every message that arrives at a given port (or over a given channel)
will create a new thread of control, subject to resource limitations (any implementation will

12.4. MESSAGE PASSING 51

task buffer is
entry insert (d : in bdata);
entry remove (d : out bdata);

end buffer;

task body buffer is
SIZE : constant integer := 10;
subtype index is integer range 1..SIZE;
buf : array (index) of bdata;
next_empty, next_full : index := 1;
full_slots : integer range 0..SIZE := 0;

begin
loop

select
when full_slots < SIZE =>

accept insert (d : in bdata) do
buf(next_empty) := d;

end;
next_empty := next_empty mod SIZE + 1;
full_slots := full_slots + 1;

or
when full_slots > 0 =>

accept remove (d : out bdata) do
d := buf(next_full);

end;
next_full := next_full mod SIZE + 1;
full_slots := full_slots - 1;

end select;
end loop;

end buffer;

Figure 12.21: Bounded buffer in Ada, with an explicit manager task.

have to stall incoming requests when the number of threads grows too large). With explicit
receipt, a message must be queued until some already-existing thread indicates a willingness
to receive it. At any given point in time there may be a potentially large number of messages
waiting to be received. Most languages and libraries with explicit receipt allow a thread to
exercise some sort of selectivity with respect to which messages it wants to consider.

In PVM and MPI, every message includes the id of the process that sent it, together
with an integer tag specified by the sender. A receive operation specifies a desired sender
id and message tag. Only matching messages will be received. In many cases receivers
specify “wild cards” for the sender id and/or message tag, allowing any of a variety of
messages to be received. Special versions of receive also allow a process to test (without
blocking) to see if a message of a particular type is currently available (this operation is
known as polling), or to “time out” and continue if a matching message cannot be received
within a specified interval of time.

Because they are languages instead of library packages, Ada, Occam, and SR are able
to use special, non-procedure-call syntax for selective message receipt. Moreover because

52 CHAPTER 12. CONCURRENCY

messages are built into the naming and typing system, these languages are able to receive
selectively on the basis of port/channel names and parameters, rather than the more primi-
tive notion of tags. In all three languages, the selective receive construct is a special form
of guarded command, as described in section 6.7.

Figure 12.21 contains code for a bounded buffer in Ada 83. Here an active “manager”
thread executes a select statement inside a loop. (Recall that it is also possible to write
a bounded buffer in Ada using protected objects, without a manager thread, as described
in section 12.3.3.) The Ada accept statement receives the in and in out parameters
(section 8.3.1) of a remote invocation request. At the matching end, accept returns the
in out and out parameters as a reply message. A client task would communicate with the
bounded buffer using an entry call :

-- producer: -- consumer:
buffer.insert (3); buffer.remove (x);

The select statement in our buffer example has two arms. The first armmay be selected
when the buffer is not full and there is an available insert request; the second arm may be
selected when the buffer is not empty and there is an available remove request. Selection
among arms is a two-step process: first the guards (when expressions) are evaluated, then
for any that are true the subsequent accept statements are considered to see if a message
is available. (The guard in front of an accept is optional; if missing it behaves like when
true =>.) If both of the guards in our example are true (the buffer is partly full) and both
kinds of messages are available, then either arm of the statement may be executed, at the
discretion of the implementation. (For a discussion of issues of fairness in the choice among
true guards, refer back to section 6.7.)

Every select statement must have at least one arm beginning with accept (and op-
tionally when). In addition, it may have three other types of arms:

when condition => delay how long
other statements

...
or when condition => terminate
...
else ...

A delay arm may be selected if no other arm becomes selectable within how long seconds.
(Ada implementations are required to support delays as long as one day or as short as 20
milliseconds.) A terminate arm may be selected only if all potential communication part-
ners have already terminated or are likewise stuck in select statements with terminate
arms. Selection of the arm causes the task that was executing the select statement to
terminate. An else arm, if present, will be selected when none of the guards are true or
when no accept statement can be executed immediately. A select statement with an
else arm is not permitted to have any delay arms. In practice, one would probably want
to include a terminate arm in the select statement of a manager-style bounded buffer.

Occam’s equivalent of select is known as ALT. As in Ada, the choice among arms
can be based both on Boolean conditions and on the availability of messages. (One minor

12.4. MESSAGE PASSING 53

difference: Occam semantics specify a one-step evaluation process; message availability is
considered part of the guard.) The body of our bounded buffer example is shown below.
Recall that Occam uses indentation to delimit control-flow constructs. Also note that Occam
has no mod operator.

-- channel declarations:
CHAN OF BDATA producer, consumer :
CHAN OF BOOL request :

-- buffer manager:
... -- (data declarations omitted)
WHILE TRUE

ALT
full_slots < SIZE & producer ? d

SEQ
buf[next_empty] := d
IF

next_empty = SIZE
next_empty := 1

next_empty < SIZE
next_empty := next_empty + 1

full_slots := full_slots + 1
full_slots > 0 & request ? t

SEQ
consumer ! buf[next_full]
IF

next_full = SIZE
next_full := 1

next_full < SIZE
next_full := next_full + 1

full_slots := full_slots - 1

The question-mark operator (?) is Occam’s receive; the exclamation-mark operator (!) is
its send. As in Ada, an active manager thread must embed the ALT statement in a loop. As
written here, the ALT statement has two guards. The first guard is true when full slots
< SIZE and a message is available on the channel named producer; the second guard is
true when full slots > 0 and a message is available on the channel named request.
Because we are using synchronization send in this example, there is an asymmetry between
the treatment of producers and consumers: the former need only send the manager data;
the latter must send it a dummy argument and then wait for the manager to send the data
back:

BDATA x :

-- producer: -- consumer:
producer ! x request ! TRUE

consumer ? x

54 CHAPTER 12. CONCURRENCY

The asymmetry could be removed by using remote invocation on CALL channels:

-- channel declarations:
CALL insert (VAL BDATA d) :
CALL remove (RESULT BDATA d) :

-- buffer manager:
WHILE TRUE

ALT
full_slots < SIZE & ACCEPT insert (VAL BDATA d)

buf[next_empty] := d
IF -- increment next_empty, etc.
...

full_slots > 0 & ACCEPT remove (RESULT BDATA d)
d := buf[next_full]
IF -- increment next_full, etc.
...

Client code now looks like this:

-- producer: -- consumer:
insert(x) remove(x)

In the code of the buffer manager, the body of the ACCEPT is the single subsequent statement
(the one that accesses buf). Updates to next empty, next full, and full slots occur
after replying to the client.

The effect of an Ada delay can be achieved in Occam by an ALT arm that “receives”
from a timer pseudo-process:

clock ? AFTER quit_time

An arm can also be selected on the basis of a Boolean condition alone, without attempting
to receive:

a > b & SKIP -- do nothing

Occam’s ALT has no equivalent of the Ada terminate, nor is there an else (a similar effect
can be achieved with a very short delay).

In SR, selective receipt is again based on guarded commands:

12.4. MESSAGE PASSING 55

resource buffer
op insert (d : bdata)
op remove () returns d : bdata

body buffer
const SIZE := 10;
var buf[0:SIZE-1] : bdata
var full_slots := 0, next_empty := 0, next_full := 0
process manager

do true ->
in insert (d) st full_slots < SIZE ->

buf[next_empty] := d
next_empty := next_empty % SIZE + 1
full_slots++

[] remove () returns d st full_slots > 0 ->
d := buf[next_full]
next_full := next_full % SIZE + 1
full_slots--

ni
od

end # manager
end # buffer

The st stands for “such that”; it introduces the Boolean half of a guard. Client code looks
like this:

producer: # consumer:
call insert(x) call remove(x)

If desired, an explicit reply to the client could be inserted between the access to buf and
the updates of next empty, next full, and full slots in each arm of the in.

In a significant departure from Ada and Occam, SR arranges for the parameters of a
potential message to be in the scope of the st condition, allowing a receiver to “peek inside”
a message before deciding whether to receive it:

in insert (d) st d % 2 = 1 -> # only accept odd numbers

A receiver can also accept messages on a given port (i.e. of a given op) out-of-order, by
specifying a scheduling expression:

in insert (d) st d % 2 = 1 by -d ->
only accept odd numbers, and pick the largest one first

Like an Ada select, an SR in statement can end with an else guard; this guard
will be selected if no message is immediately available. There is no equivalent of delay or
terminate.

56 CHAPTER 12. CONCURRENCY

12.4.4 Remote Procedure Call

Any of the three principal forms of send (no-wait, synchronization, remote-invocation)
can be paired with either of the principal forms of receive (explicit or implicit). The
combination of remote-invocation send with explicit receipt (e.g. as in Ada) is sometimes
known as rendezvous. The combination of remote-invocation send with implicit receipt is
usually known as remote procedure call. RPC is available in several concurrent languages
(SR obviously among them), and is also supported on many systems by augmenting a
sequential language with a stub compiler. The stub compiler is independent of the language’s
regular compiler. It accepts as input a formal description of the subroutines that are to
be called remotely. The description is roughly equivalent to the subroutine headers and
declarations of the types of all parameters. Based on this input the stub compiler generates
source code for client and server stubs. A client stub for a given subroutine marshals
request parameters and an indication of the desired operation into a message buffer, sends
the message to the server, waits for a reply message, and un-marshals that message into
result parameters. A server stub takes a message buffer as parameter, un-marshals request
parameters, calls the appropriate local subroutine, marshals return parameters into a reply
message, and sends that message back to the appropriate client. Invocation of a client stub
is relatively straightforward. Invocation of server stubs is discussed in the subsection on
“implementation” below.

Semantics

A principal goal of most RPC systems is to make the remote nature of calls as transparent as
possible—that is, to make remote calls look as much like local calls as possible [BN84]. In a
stub compiler system, a client stub should have the same interface as the remote procedure
for which it acts as proxy; the programmer should usually be able to call the routine without
knowing or caring whether it is local or remote.

Several issues make it difficult to achieve transparency in practice:

parameter modes: It is difficult to implement call-by-reference parameters across a network,
since actual parameters will not be in the address space of the called routine. (Access
to global variables is similarly difficult.)

performance: There is no escaping the fact that remote procedures may take a long time
to return. In the face of network delays, one cannot use them casually.

failure semantics: Remote procedures are much more likely to fail than are local procedures.
It is generally acceptable in the local case to assume that a called procedure will either
run exactly once or else the entire program will fail. Such an assumption is overly
restrictive in the remote case.

We can use value/result parameters in place of reference parameters so long as pro-
gram correctness does not rely on the aliasing created by reference parameters. As noted
in section 8.3.1, Ada declares that a program is erroneous if it can tell the difference be-
tween pass-by-reference and pass-by-value/result implementations of in out parameters.
If absolutely necessary, reference parameters and global variables can be implemented with
message-passing thunks in a manner reminiscent of call-by-name parameters (section 8.3.1),

12.4. MESSAGE PASSING 57

Application
program

Library/run-
time system

OS kernel

...

...

remote procedures
main:
 install stubs
 start dispatcher

dispatcher:
 loop
 OS_receive ()

 call appropriate stub

stubs

OS_send (reply)

1 2 7 6

3

4 5

8

Figure 12.22: Implementation of a Remote Procedure Call server. Application code ini-
tializes the RPC system by installing stubs generated by the stub compiler (not shown).
It then calls into the run-time system to enable incoming calls. Depending on details of
the particular system in use, the dispatcher may use the main program’s single process
(in which case the call to start the dispatcher never returns), or it may create a pool of
processes that handle incoming requests.

but only at very high cost. As noted in section 7.10, a few languages and systems perform
deep copies of linked data structures passed to remote routines.

Performance differences between local and remote calls can only be hidden by artificially
slowing down the local case. Such an option is clearly unacceptable.

Exactly-once failure semantics can be provided by aborting the caller in the event of
failure or, in highly reliable systems, by delaying the caller until the operating system or
language run-time system is able to rebuild the failed computation using information previ-
ously dumped to disk. (Failure recovery techniques are beyond the scope of this text.) An
attractive alternative is to accept “at-most-once” semantics with notification of failure. The
implementation retransmits requests for remote invocations as necessary in an attempt to
recover from lost messages. It guarantees that retransmissions will never cause an invoca-
tion to happen more than once, but it admits that in the presence of communication failures
the invocation may not happen at all. If the programming language provides exceptions
then the implementation can use them to make communication failures look just like any
other kind of run-time error.

Implementation

At the level of the kernel interface, receive is an explicit operation on almost all operat-
ing systems. To make receive appear implicit to the application programmer, the code
produced by an RPC stub compiler (or the run-time system of a language such as SR)
must bridge this explicit-to-implicit gap. We describe the implementation here in terms
of stub compilers; in a concurrent language with implicit receipt the regular compiler does
essentially the same work.

58 SUMMARY

Figure 12.22 illustrates the layers of a typical RPC system. Code above the upper hor-
izontal line is written by the application programmer. Code in the middle is a combination
of library routines and code produced by the RPC stub generator. To initialize the RPC
system, the application makes a pair of calls into the run-time system. The first provides
the system with pointers to the stub routines produced by the stub compiler; the second
starts a message dispatcher. What happens after this second call depends on whether the
server is concurrent and, if so, whether its threads are implemented on top of one OS process
or several.

In the simplest case—a single-threaded server on a single OS process—the dispatcher
runs a loop that calls into the kernel to receive a message. When a message arrives, the
dispatcher calls the appropriate RPC stub, which un-marshals request parameters and
calls the appropriate application-level procedure. When that procedure returns, the stub
marshals return parameters into a reply message, calls into the kernel to send the message
back to the caller, and then returns to the dispatcher.

This simple organization works well so long as each remote request can be handled
quickly, without ever needing to block. If remote requests must sometimes wait for user-level
synchronization, then the server’s process must manage a ready list of threads, as described
in section 12.2.4, but with the dispatcher integrated into the usual thread scheduler. When
the current thread blocks (in application code), the scheduler/dispatcher will grab a new
thread from the ready list. If the ready list is empty, the scheduler/dispatcher will call into
the kernel to receive a message, fork a new thread to handle it, and then continue to execute
runnable threads until the list is empty again.

In a multi-process server, the call to start the dispatcher will generally ask the kernel
to fork a “pool” of processes to service remote requests. Each of these processes will then
perform the operations described in the previous paragraphs. In a language or library with a
one-one correspondence between threads and processes, each process will repeatedly receive
a message from the kernel and then call the appropriate stub. With a more general thread
package, each process will run threads from the ready list until the list is empty, at which
point it (the process) will call into the kernel for another message. So long as the number of
runnable threads is greater than or equal to the number of processes, no new messages will
be received. When the number of runnable threads drops below the number of processes,
then the extra processes will call into the kernel, where they will block until requests arrive.

Summary and Concluding Remarks

Concurrency and parallelism have become ubiquitous in modern computer systems. It is
probably safe to say that most computer research and development today involves con-
currency in one form or another. High-end computer systems are almost always parallel,
and multiprocessor PCs are becoming increasingly common. With the explosion in the mid
1990’s of multimedia and Internet-based applications, multi-threaded and message-passing
programs have become central to day-to-day computing even on uniprocessors.

In this chapter we have provided an introduction to concurrent programming with an
emphasis on programming language issues. We began with a quick synopsis of the his-
tory of concurrency, the motivation for multi-threaded programs, and the architecture of
modern multiprocessors. We then surveyed the fundamentals of concurrent software, in-
cluding communication, synchronization, and the creation and management of threads. We

SUMMARY 59

distinguished between shared memory and message-passing models of communication and
synchronization, and between language and library-based implementations of concurrency.

Our survey of thread creation and management described some six different constructs
for creating threads: co-begin, parallel loops, launch-at-elaboration, fork/join, implicit
receipt, and early reply. Of these fork/join is the most common; it is found in Ada, Java,
Modula-3, SR, and library-based packages such as PVM and MPI. RPC systems usually use
fork/join internally to implement implicit receipt. Regardless of thread creation mech-
anism, most concurrent programming systems implement their language or library-level
threads on top of a collection of OS-level processes, which the operating system implements
in a similar manner on top of a collection of hardware processors. We built our sample im-
plementation in stages, beginning with coroutines on a uniprocessor, then adding a ready
list and scheduler, then timers for preemption, and finally parallel scheduling on multiple
processors.

Our section on shared memory focused primarily on synchronization. We distinguished
between mutual exclusion and condition synchronization, and between busy-wait and sched-
uler-based implementations. Among busy-wait mechanisms we looked in particular at spin
locks and barriers. Among scheduler-based mechanisms we looked at semaphores, moni-
tors, and conditional critical regions. Of the three, semaphores are the simplest and most
common. Monitors and conditional critical regions provide a better degree of encapsulation
and abstraction, but are not amenable to implementation in a library. Conditional critical
regions might be argued to provide the most pleasant programming model, but cannot in
general be implemented as efficiently as monitors. We also considered the implicit synchro-
nization found in the loops of High Performance Fortran, the functional constructs of Sisal,
and the future-like constructs of Multilisp, Linda, and CC++.

Our section on message-passing examined four principal issues: how to name communi-
cation partners, how long to block when sending a message, whether to receive explicitly or
implicitly, and how to select among messages that may be available for receipt simultane-
ously. We noted that any of the three principal send mechanisms (no-wait, synchronization,
remote-invocation) can be paired with either of the principal receive mechanisms (explicit,
implicit). Remote-invocation send with explicit receipt is sometimes known as rendezvous.
Remote-invocation send with implicit receipt is generally known as remote procedure call.

As in previous chapters, we saw many cases in which language design and language im-
plementation influence one another. Some mechanisms (cactus stacks, conditional critical
regions, content-based message screening) are sufficiently complex that many language de-
signers have choosen not to provide them. Other mechanisms (Ada-style parameter modes)
have been developed specifically to facilitate an efficient implementation technique. And in
still other cases (the semantics of no-wait send, blocking inside a monitor) implementation
issues play a major role in some larger set of tradeoffs.

Despite the very large number of concurrent languages that have been designed to
date, most concurrent programming continues to employ conventional sequential languages
augmented with library packages. As of 1999, HPF and other concurrent languages for large-
scale multicomputers have yet to seriously undermine the dominance of PVM and MPI. For
smaller-scale shared-memory computing, programmers continue to rely on library packages
in C and C++. At the very least, it would appear that a necessary (but not sufficient)
condition for widespread acceptance of any concurrent language is that it be seen as an
extension to some successful and popular sequential language, in which programmers have

60 REVIEW QUESTIONS

already made a substantial intellectual investment, and for which outstanding compilers
are available. Among languages currently on the horizon, Java seems to be the most likely
exception to this rule. Its suitability for network-based computing, its extreme portability
across platforms, and the enthusiasm with which it has been embraced by the popular press
appear to be establishing an enormous base of support in spite of initially poor compilers.
For the relatively safe, on-demand construction of programs that span the Internet, Java
currently has no serious competitor.

Review Questions

1. Explain the rationale for concurrency: why do people write concurrent programs?

2. Describe the evolution of computer operation from stand-alone mode to batch pro-
cessing, to multiprogramming and timesharing.

3. Describe six different syntactic constructs commonly used to create new threads of
control in a concurrent program.

4. Explain the difference between a thread and a coroutine.

5. What are the tradeoffs between language-based and library-based implementations of
concurrency?

6. Name four explicitly concurrent programming languages.

7. What is busy-waiting? What is its principal alternative?

8. What is a race condition?

9. What is a context switch? What is preemption?

10. Explain the coherence problem, e.g. in the context of multiprocessor caches.

11. Describe the bag of tasks programming model.

12. Explain the difference between data parallelism and task parallelism.

13. What is co-scheduling? What is its purpose?

14. What is a critical section?

15. What does it mean for an operation to be atomic?

16. Explain the difference between mutual exclusion and condition synchronization.

17. Describe the behavior of a test and set instruction. Show how to use it to build a
spin lock.

18. Describe the behavior of the load linked and store conditional instructions. What
advantages do they offer in comparison to test and set?

19. Explain how a reader-writer lock differs from an “ordinary” lock.

EXERCISES 61

20. What is a barrier? In what types of programs are barriers common?

21. What does it mean for code to be reentrant?

22. What is a semaphore? What operations does it support? How do binary and general
semaphores differ?

23. What is a monitor? How do monitor condition variables differ from semaphores?

24. What is a conditional critical region? How does it differ from a monitor?

25. What is deadlock?

26. Describe the semantics of the HPF/Fortran 95 forall loop.

27. Explain the difference between AND parallelism and OR parallelism in Prolog.

28. What are single-assignment variables? In what languages do they appear?

29. What are gather and scatter operations in a message-passing program?

30. Describe three ways in which processes commonly name their communication partners.

31. What are the three principal synchronization options for the sender of a message?
What are the tradeoffs among them?

32. Describe the tradeoffs between explicit and implicit message receipt.

33. What is a remote procedure call (RPC)? What is a stub compiler?

34. What are the obstacles to transparency in an RPC system?

35. What is a rendezvous? How does it differ from a remote procedure call?

36. What is an early reply?

Exercises

1. Give an example of a “benign” race condition—one whose outcome affects program
behavior, but not correctness.

2. We have defined the ready list of a thread package to contain all threads that are
runnable but not running, with a separate variable to identify the currently running
thread. Could we just as easily have defined the ready list to contain all runnable
threads, with the understanding that the one at the head of the list is running? (Hint:
think about multiprocessors.)

3. Imagine you are writing the code to manage a hash table that will be shared among
several concurrent threads. Assume that operations on the table need to be atomic.
You could use a single mutual exclusion lock to protect the entire table, or you could
devise a scheme with one lock per hash-table bucket. Which approach is likely to
work better, under what circumstances? Why?

62 EXERCISES

4. The typical spin lock holds only one bit of data, but requires a full word of storage,
because only full words can be read, modified, and written atomically in hardware.
Consider, however, the hash table of the previous exercise. If we choose to employ
a separate lock for each bucket of the table, explain how to implement a “two-level”
locking scheme that couples a conventional spin lock for the table as a whole with a
single bit of locking information for each bucket. Explain why such a scheme might
be desirable, particularly in a table with external chaining. (Hint: see the paper by
Stumm et al. [UKGS94].)

5. Many of the most compute-intensive scientific applications are “dusty-deck” Fortran
programs, generally very old and very complex. Years of effort may sometimes be
required to rewrite a dusty-deck program to run on a parallel machine. An attractive
alternative would be to develop a compiler that could “parallelize” old programs
automatically. Explain why this is not an easy task.

6. The load linked and store conditional (LL/SC) instructions described in sec-
tion 12.3.1 resemble an earlier universal atomic operation known as compare-and-
swap (CAS). CAS was introduced by the IBM 370 architecture, and also appears in
the 680x0 and SPARC V9 instruction sets. It takes three operands: the location to
be modified, a value that the location is expected to contain, and a new value to be
placed there if (and only if) the expected value is found. Like store conditional,
CAS returns an indication of whether it succeeded. The atomic add instruction se-
quence shown for load linked/store conditional on page 29 would be written as
follows with CAS:

start:
r1 := foo
r3 := r1 + r2
CAS (foo, r1, r3)
if failed goto start

Discuss the relative advantages of LL/SC and CAS. Consider how they might be imple-
mented on a cache-coherent multiprocessor. Are there situations in which one would
work but the other would not? (Hints: consider algorithms in which a thread may
need to touch more than one memory location. Also consider algorithms in which the
contents of a memory location might be changed and then restored.)

7. On most machines, a SC instruction can fail for any of several reasons, including the
occurrence of an interrupt in the time since the matching LL. What steps must a
programmer take to make sure that algorithms work correctly in the face of such
“spurious” SC failures?

8. Starting with the test-and-test and set lock of figure 12.10, implement busy-wait
code that will allow readers to access a data structure concurrently. Writers will
still need to lock out both readers and other writers. You may use any reasonable
atomic instruction(s), e.g. LL/SC. Consider the issue of fairness. In particular, if there
are always readers interested in accessing the data structure, your algorithm should
ensure that writers are not locked out forever.

EXERCISES 63

9. The mechanism used in figure 12.12 (page 31) to make scheduler code reentrant em-
ploys a single OS-provided lock for all the scheduling data structures of the applica-
tion. Among other things, this mechanism prevents threads on separate processors
from performing P or V operations on unrelated semaphores, even when none of the
operations needs to block. Can you devise another synchronization mechanism for
scheduler-related operations that admits a higher degree of concurrency but that is
still correct?

10. We have seen how the scheduler for a thread package that runs on top of more than
one OS-provided process must both disable timer signals and acquire a spin lock to
safeguard the integrity of the ready list and condition queues. To implement processes
within the operating system, the kernel still uses spin locks, but with processors
instead of processes, and hardware interrupts instead of signals. Unfortunately, the
kernel cannot afford to disable interrupts for more than a small, bounded period of
time, or devices may not work correctly. A straightforward adaptation of the code
in figure 12.12 will not suffice because it would attempt to acquire a spin lock (an
unbounded operation) while interrupts were disabled. Similarly, the kernel cannot
afford to acquire a spin lock and then disable interrupts because, if an interrupt
occurs in-between these two operations, other processors may be forced to spin for a
very long time. How would you solve this problem? (Hint: look carefully at the loop
in the middle of reschedule, and consider a hybrid technique that disables interrupts
and acquires a spin lock as a single operation.)

11. To make spin locks useful on a multiprogrammed multiprocessor, one might want to
ensure that no process is ever preempted in the middle of a critical section. That way it
would always be safe to spin in user space, because the process holding the lock would
be guaranteed to be running on some other processor, rather than preempted and
possibly in need of the current processor. Explain why an operating system designer
might not want to give user processes the ability to disable preemption arbitrarily.
(Hint: think about fairness and multiple users.) Can you suggest a way to get around
the problem? (References to several possible solutions can be found in the paper by
Kontothanassis, Wisniewski, and Scott [KWS97].)

12. Show how to use semaphores to construct an n-thread barrier.

13. Would it ever make sense to declare a semaphore with an initially negative count?
Why or why not?

14. Without looking at Hoare’s definition, show how to implement monitors with sema-
phores.

15. Using monitors, show how to implement semaphores. What is your monitor invariant?

16. Show how to implement general semaphores, given only binary semaphores.

17. Suppose that every monitor has a separate mutual exclusion lock, and that we want
to release all locks when a thread waits in the innermost of a sequence of nested
monitor calls. When the thread awakens it will need to reacquire the outer locks. In
what order should it do so? (Hint: think about deadlock.) Can we guarantee that

64 EXERCISES

Figure 12.23: The Dining Philosophers. Hungry philosophers must contend for the forks to
their left and right in order to eat.

the awakened thread will be the next to run in the innermost monitor? (For further
hints, see Wettstein [Wet78].)

18. In addition to the usual signal operation, Mesa and Modula-3 provide a broadcast
operation that awakens all threads waiting on a given monitor condition variable.
Show how the programmer can achieve a similar effect (awakening all threads) in a
Hoare monitor. What is the advantage of the built-in broadcast operation?

19. Show how general semaphores can be implemented with conditional critical regions
in which all threads wait for the same condition, thereby avoiding the overhead of
unproductive wake-ups.

20. Write code for a bounded buffer using Java and/or the protected object mechanism
of Ada 95.

21. The dining philosophers problem [Dij72] is a classic exercise in synchronization (fig-
ure 12.23). Five philosophers sit around a circular table. In the center is a large
communal plate of spaghetti. Each philosopher repeatedly thinks for a while and
then eats for a while, at intervals of his or her own choosing. On the table between
each pair of adjacent philosophers is a single fork. To eat, a philosopher requires both
adjacent forks: the one on the left and the one on the right. Because they share a
fork, adjacent philosophers cannot eat simultaneously.

Write a solution to the dining philosophers problem in which each philosopher is
represented by a process and the forks are represented by shared data. Synchronize
access to the forks using semaphores, monitors, or conditional critical regions. Try to
maximize concurrency.

EXERCISES 65

22. In the previous exercise you may have noticed that the dining philosophers are prone
to deadlock. One has to worry about the possibility that all five of them will pick
up their right-hand forks simultaneously, and then wait forever for their left-hand
neighbors to finish eating.

Discuss as many strategies as you can think of to address the deadlock problem. Can
you describe a solution in which it is provably impossible for any philosopher to go
hungry forever? Can you describe a solution that is fair in a strong sense of the
word (i.e. in which no one philosopher gets more chance to eat than some other over
the long term)? For a particularly elegant solution, see the paper by Chandy and
Misra [CM84].

23. In some concurrent programming systems, global variables are shared by all threads.
In others, each newly created thread has a separate copy of the global variables,
commonly initialized to the values of the globals of the creating thread. Under this
private globals approach, shared data must be allocated from a special heap. In still
other programming systems, the programmer can specify which global variables are
to be private and which are to be shared.

Discuss the tradeoffs between private and shared global variables. Which would you
prefer to have available, for which sorts of programs? How would you implement
each? Are some options harder to implement than others? To what extent do your
answers depend on the nature of processes provided by the operating system?

24. AND parallelism in logic languages is analogous to the parallel evaluation of arguments
in a functional language (e.g. Multilisp). Does OR parallelism have a similar analog?
(Hint: think about special forms (section 11.2.2).) Can you suggest a way to obtain
the effect of OR parallelism in Multilisp?

25. In section 12.3.4 we claimed that both AND parallelism and OR parallelism were
problematic in Prolog, because they failed to adhere to the deterministic search order
required by language semantics. Elaborate on this claim. What specifically can go
wrong?

26. Find out how message-passing is implemented in some locally available concurrent
language or library. Does this system provide no-wait send, synchronization send,
remote-invocation send, or some related hybrid? If you wanted to emulate the other
options using the one available, how expensive would be emulation be, in terms of
low-level operations performed by the underlying system? How would this overhead
compare to what could be achieved on the same underlying system by a language or
library that provided an optimized implementation of the other varieties of send?

27. In section 12.3.3 we cast monitors as a mechanism for synchronizing access to shared
memory, and we described their implementation in terms of semaphores. It is also
possible to think of a monitor as a module inhabited by a single process, which accepts
request messages from other processes, performs appropriate operations, and replies.
Give the details of a monitor implementation consistent with this conceptual model.
Be sure to include condition variables. (Hint: see the discussion of early reply in
section 12.2.3, page 20.)

66 BIBLIOGRAPHIC NOTES

28. Show how shared memory can be used to implement message passing. Specifically,
choose a set of message-passing operations (e.g. no-wait send and explicit message
receipt) and show how to implement them in your favorite shared-memory notation.

29. When implementing reliable messages on top of unreliable messages, a sender can
wait for an acknowledgment message, and retransmit if it doesn’t receive it within a
bounded period of time. But how does the receiver know that its acknowledgment
has been received? Why doesn’t the sender have to acknowledge the acknowledgment
(and the receiver acknowledge the acknowledgment of the acknowledgment . . .)? (For
more information on the design of fast, reliable protocols, you might want to consult
a text on computer networks [Tan96, PD96].)

30. An arm of an Occam ALT statement may include an input guard—a receive (?)
operation—in which case the arm can be chosen only if a potential partner is trying
to send a matching message. One could imagine allowing output guards as well—send
(!) operations that would allow their arm to be chosen only if a potential partner
were trying to receive a matching message. Neither Occam nor CSP (as originally
defined) permits output guards. Can you guess why? Suppose you wished to provide
them. How would the implementation work? (Hint: for ideas, see the articles of Bern-
stein [Ber80], Buckley and Silbershatz [BS83], Bagrodia [Bag86], or Ramesh [Ram87].)

31. In section 12.4.3 we described the semantics of a terminate arm on an Ada select
statement: this armmay be selected if and only if all potential communication partners
have terminated, or are likewise stuck in select statements with terminate arms.
Occam and SR have no similar facility, though the original CSP proposal does. How
would you implement terminate arms in Ada? Why do you suppose they were left out
of Occam and SR? (Hint: for ideas, see the work of Apt and Francez [Fra80, AF84].)

Bibliographic Notes

Much of the early study of concurrency stems from a pair of articles by Dijkstra [Dij68,
Dij72]. Andrews and Schneider [AS83] provide an excellent survey of concurrent program-
ming notations. The more recent book by Andrews [And91] extends this survey with exten-
sive discussion of axiomatic semantics for concurrent programs and algorithmic paradigms
for distributed computing. Holt et al. [HGLS78] is a useful reference for many of the classic
problems in concurrency and synchronization. Anderson [ALL89] discusses thread pack-
age implementation details and their implications for performance. The July 1989 issue of
IEEE Software and the September 1989 issue of ACM Computing Surveys contain survey
articles and descriptions of many concurrent languages. References for monitors appear in
section 12.3.3.

Peterson’s two-process synchronization algorithm appears in a remarkably elegant and
readable two-page paper [Pet81]. Lamport’s 1978 article on “Time, Clocks, and the Or-
dering of Events in a Distributed System” [Lam78] argued convincingly that the notion of
global time cannot be well defined, and that distributed algorithms must therefore be based
on causal happens before relationships among individual processes. Reader-writer locks are
due to Courtois, Heymans, and Parnas [CHP71]. Mellor-Crummey and Scott [MCS91]

BIBLIOGRAPHIC NOTES 67

survey the principal busy-wait synchronization algorithms and introduce locks and barri-
ers that scale without contention to very large machines. The seminal paper on lock-free
synchronization is that of Herlihy [Her91].

Concurrent logic languages are surveyed by Shapiro [Sha89], Tick [Tic91], and Cian-
carini [Cia92]. Parallel Lisp dialects include Multilisp [Hal85, MKH91] (section 12.3.4),
Qlisp [GG89], and Spur Lisp [ZHL+89].

Remote Procedure Call received increasing attention in the wake of Nelson’s Ph.D.
research [Nel81, BN84]. Schroeder and Burrows [SB90] discuss the efficient implementation
of RPC on a network of workstations. Bershad [BALL90] discusses its implementation
across address spaces within a single machine.

Almasi and Gottlieb [AG94] describe the principal classes of parallel computers and the
styles of algorithms and languages that work well on each. The leading texts on computer
networks are by Tanenbaum [Tan96] and Peterson and Davie [PD96]. The recent text of
Culler, Singh, and Gupta [CS98] contains a wealth of information on parallel programming
and multiprocessor architecture. PVM [Sun90, GBD+94] and MPI [BDH+95, SOHL+95]
are documented in a variety of articles and books. Sun RPC is documented in Internet
RFC number 1831 [Sri95].

Software distributed shared memory (S-DSM) was originally proposed by Li as part of
his Ph.D. research [LH89]. Stumm and Zhou [SZ90] and Nitzberg and Lo [NL91] provide
early surveys of the field. The TreadMarks system [ACD+96] from Rice University is widely
considered the best of the more recent implementations.

68 BIBLIOGRAPHIC NOTES

Bibliography

[ACC+90] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan
Porterfield, and Burton Smith. The Tera computer system. In Proceedings of
the 1990 International Conference on Supercomputing, pages 1–6, Amsterdam,
The Netherlands, June 1990. ACM Press, New York, NY. In ACM Computer
Architecture News, 18(3), September 1990.

[ACD+96] Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu,
Ramakrishnan Rajamony, Weimin Yu, and Willy Zwaenepoel. TreadMarks:
Shared memory computing on networks of workstations. IEEE Computer,
29(2):18–28, February 1996.

[ACG86] Shakil Ahuja, Nicholas Carriero, and David Gelernter. Linda and friends. IEEE
Computer, 19(8):26–34, August 1986.

[AF84] Krzysztof R. Apt and Nissim Francez. Modeling the distributed termination
convention of CSP. ACM Transactions on Programming Languages and Sys-
tems, 6(3):370–379, July 1984.

[AG94] George S. Almasi and Allan Gottlieb. Highly Parallel Computing. Ben-
jamin/Cummings, Redwood City, CA, second edition, 1994. ISBN 0-8053-
0443-6.

[ALL89] Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy. The per-
formance implications of thread management alternatives for shared-memory
multiprocessors. IEEE Transactions on Computers, 38(12):1631–1644, Decem-
ber 1989.

[And91] Gregory R. Andrews. Concurrent Programming: Principles and Practice. Ben-
jamin/Cummings, Redwood City, CA, 1991. ISBN 0-8053-0086-4.

[AO93] Gregory R. Andrews and Ronald A. Olsson. The SR Programming Language:
Concurrency in Practice. Benjamin/Cummings, Redwood City, CA, 1993.
ISBN 0-8053-0088-0.

[AS83] Gregory R. Andrews and Fred B. Schneider. Concepts and notations for con-
current programming. ACM Computing Surveys, 15(1):3–43, March 1983.

69

70 BIBLIOGRAPHY

[Bag86] Rajive L. Bagrodia. A distributed algorithm to implement the generalized alter-
native command of CSP. In Proceedings of the Sixth International Conference
on Distributed Computing Systems, pages 422–427, Cambridge, MA, May 1986.
IEEE Computer Society Press, Washington, DC.

[BALL90] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M.
Levy. Lightweight remote procedure call. ACM Transactions on Computer
Systems, 8(1):37–55, February 1990.

[BDH+95] Jehoshua Bruck, Danny Dolev, Ching-Tien Ho, Marcel-Catalin Rosu, and Ray
Strong. Efficient message passing interface (MPI) for parallel computing on
clusters of workstations. In Proceedings of the Seventh Annual ACM Symposium
on Parallel Algorithms and Architectures, pages 64–73, Santa Barbara, CA,
July 1995.

[Ber80] Arthur J. Bernstein. Output guards and nondeterminism in ‘Communicat-
ing Sequential Processes’. ACM Transactions on Programming Languages and
Systems, 2(2):234–238, April 1980.

[BN84] Andrew D. Birrell and Bruce J. Nelson. Implementing remote procedure calls.
ACM Transactions on Computer Systems, 2(1):39–59, February 1984.

[Bri73] Per Brinch Hansen. Operating System Principles. Prentice-Hall, Englewood
Cliffs, NJ, 1973. ISBN 0-13-637843-9.

[Bri75] Per Brinch Hansen. The programming language Concurrent Pascal. IEEE
Transactions on Software Engineering, SE–1(2):199–207, June 1975.

[Bri78] Per Brinch Hansen. Distributed processes: A concurrent programming concept.
Communications of the ACM, 21(11):934–941, November 1978.

[Bri81] Per Brinch Hansen. The design of Edison. Software—Practice and Experience,
11(4):363–396, April 1981.

[Bro96] Kraig Brockschmidt. How OLE and COM solve the problems of component
software design. Microsoft Systems Journal, 11(5):63–82, May 1996.

[BS83] G. N. Buckley and A. Silbershatz. An effective implementation for the gen-
eralized input-output construct of CSP. ACM Transactions on Programming
Languages and Systems, 5(2):223–235, April 1983.

[Can92] David Cann. Retire Fortran? A debate rekindled. Communications of the
ACM, 35(8):81–89, August 1992.

[CHP71] P. J. Courtois, F. Heymans, and David L. Parnas. Concurrent control with
‘readers’ and ‘writers’. Communications of the ACM, 14(10):667–668, October
1971.

[Cia92] Paolo Ciancarini. Parallel programming with logic languages: A survey. Com-
puter Languages, 17(4):213–239, October 1992.

BIBLIOGRAPHY 71

[CM84] K. Mani Chandy and Jayadev Misra. The drinking philosophers problem. ACM
Transactions on Programming Languages and Systems, 6(4):632–646, October
1984.

[CS98] David E. Culler and Jaswinder Pal Singh. Parallel Computer Architecture: A
Hardware/Software Approach. Morgan Kaufmann, San Francisco, CA, 1998.
With Anoop Gupta. ISBN 1-55860-343-3.

[Dij65] Edsger W. Dijkstra. Solution of a problem in concurrent programming control.
Communications of the ACM, 8(9):569, September 1965.

[Dij68] Edsger W. Dijkstra. Co-operating sequential processes. In F. Genuys, editor,
Programming Languages, pages 43–112. Academic Press, London, England,
1968.

[Dij72] Edsger W. Dijkstra. Hierarchical ordering of sequential processes. In Charles
Antony Richard Hoare and Ronald H. Perrott, editors, Operating Systems Tech-
niques, A.P.I.C. Studies in Data Processing #9, pages 72–93. Academic Press,
London, England, 1972. ISBN 0-123-50650-6. Also Acta Informatica, 1(8):115–
138, 1971.

[Fos95] Ian Foster. Compositional C++. In Debugging and Building Parallel Programs,
chapter 5, pages 167–204. Addison-Wesley, Reading, MA, 1995. ISBN 0-201-
57594-9. Available in hypertext at http://www.mcs.anl.gov/dbpp/text/
node51.html.

[Fra80] Nissim Francez. Distributed termination. ACM Transactions on Programming
Languages and Systems, 2(1):42–55, January 1980.

[GBD+94] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek,
and Vaidyalingam S. Sunderam. PVM: Parallel Virtual Machine: A Users’
Guide and Tutorial for Networked Parallel Computing. Scientific and Engi-
neering Computation series. MIT Press, Cambridge, MA, 1994. ISBN 0-262-
57108-0. Available in hypertext at http://www.netlib.org/pvm3/book/
pvm-book.html.

[GG89] Ron Goldman and Richard P. Gabriel. Qlisp: Parallel processing in Lisp. IEEE
Software, 6(4):51–59, July 1989.

[GKP96] George Al Geist, J. A. Kohl, and P. M. Papadopoulos. PVM and MPI: a
comparison of features. Calculateurs Paralleles, 8(2), 1996.

[Hal85] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic compu-
tation. ACM Transactions on Programming Languages and Systems, 7(4):501–
538, October 1985.

[Her91] Maurice P. Herlihy. Wait-free synchronization. ACM Transactions on Pro-
gramming Languages and Systems, 13(1):124–149, January 1991.

72 BIBLIOGRAPHY

[HGLS78] Richard C. Holt, G. Scott Graham, Edward D. Lazowska, and Mark A.
Scott. Structured Concurrent Programming with Operating Systems Applica-
tions. Addison-Wesley Series in Computer Science. Addison-Wesley, Reading,
MA, 1978. ISBN 0-201-02937-5.

[HM92] Maurice P. Herlihy and J. Elliot B. Moss. Lock-free garbage collection for mul-
tiprocessors. IEEE Transactions on Parallel and Distributed Systems, 3(3):304–
311, May 1992.

[Hoa74] Charles Antony Richard Hoare. Monitors: An operating system structuring
concept. Communications of the ACM, 17(10):549–557, October 1974.

[Hoa78] Charles Antony Richard Hoare. Communicating Sequential Processes. Com-
munications of the ACM, 21(8):666–677, August 1978.

[JG89] Geraint Jones and Michael Goldsmith. Programming in occam2. Prentice-Hall
International Series in Computer Science. Prentice-Hall, Englewood Cliffs, NJ,
second edition, 1989. ISBN 0-13-730334-3.

[Jor85] Harry F. Jordan. HEP architecture, programming and performance. In
Janusz S. Kowalik, editor, Parallel MIMD Computation: The HEP Supercom-
puter and its Applications, pages 1–40. MIT Press, Cambridge, MA, 1985. ISBN
0-262-11101-2.

[Kes77] J. L. W. Kessels. An alternative to event queues for synchronization in moni-
tors. Communications of the ACM, 20(7):500–503, July 1977.

[KLS+94] Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L. Steele
Jr., and Mary E. Zosel. The High Performance Fortran Handbook. Scientific
and Engineering Computation Series. MIT Press, Cambridge, MA, 1994. ISBN
0-262-61094-9.

[KWS97] Leonidas I. Kontothanassis, Robert Wisniewski, and Michael L. Scott.
Scheduler-conscious synchronization. ACM Transactions on Computer Sys-
tems, 15(1):3–40, February 1997.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.

[Lam87] Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions on
Computer Systems, 5(1):1–11, February 1987.

[LH89] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.
ACM Transactions on Computer Systems, 7(4):321–359, November 1989.

[LR80] Butler W. Lampson and David D. Redell. Experience with processes and mon-
itors in Mesa. Communications of the ACM, 23(2):105–117, February 1980.

[MCS91] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable syn-
chronization on shared-memory multiprocessors. ACM Transactions on Com-
puter Systems, 9(1):21–65, February 1991.

BIBLIOGRAPHY 73

[MKH91] Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. Lazy task creation:
A technique for increasing the granularity of parallel programs. IEEE Trans-
actions on Parallel and Distributed Systems, 2(3):264–280, July 1991.

[MS96] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In Proceedings of the Fif-
teenth Annual ACM Symposium on Principles of Distributed Computing, pages
267–275, Philadelphia, PA, May 1996.

[Nel81] Bruce J. Nelson. Remote Procedure Call. Ph.D. dissertation, Carnegie-Mellon
University, 1981. School of Computer Science Technical Report CMU-CS-81-
119.

[NL91] Bill Nitzberg and Virginia Lo. Distributed shared memory: A survey of issues
and algorithms. IEEE Computer, 24(8):52–60, August 1991.

[Ope96] Open Software Foundation. OSF DCE Application Development Reference,
Release 1.1. OSF DCE Series. Prentice-Hall, Upper Saddle River, NJ, 1996.
ISBN 0-13-185869-6.

[Ous82] John K. Ousterhout. Scheduling techniques for concurrent systems. In Proceed-
ings of the Third International Conference on Distributed Computing Systems,
pages 22–30, Miami/Ft. Lauderdale, FL, October 1982. IEEE Computer Soci-
ety Press, Silver Spring, MD.

[PD96] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems Ap-
proach. Morgan Kaufmann, San Francisco, CA, 1996. ISBN 1-55860-368-9.

[Pet81] Gary L. Peterson. Myths about the mutual exclusion problem. Information
Processing Letters, 12(3):115–116, June 1981.

[Ram87] S. Ramesh. A new efficient implementation of CSP with output guards. In
Proceedings of the Seventh International Conference on Distributed Comput-
ing Systems, pages 266–273, Berlin, West Germany, September 1987. IEEE
Computer Society Press, Washington, DC.

[SB90] Michael Schroeder and Michael Burrows. Performance of Firefly RPC. ACM
Transactions on Computer Systems, 8(1):1–17, February 1990.

[SBG+91] Robert E. Strom, David F. Bacon, Arthur P. Goldberg, Andy Lowry, Daniel M.
Yellin, and Shaula Alexander Yemini. Hermes: A Language for Distributed
Computing. Prentice-Hall Series in Innovative Technology. Prentice-Hall, En-
glewood Cliffs, NJ, 1991. ISBN 0-13-389537-8.

[Sco91] Michael L. Scott. The Lynx distributed programming language: Motivation,
design, and experience. Computer Languages, 16(3/4):209–233, 1991.

[Sha89] Ehud Shapiro. The family of concurrent logic programming languages. ACM
Computing Surveys, 21(3):412–510, September 1989. Correction appears in
Volume 21, Number 4.

74 BIBLIOGRAPHY

[Sie96] Jon Siegel. CORBA Fundamentals and Programming. John Wiley and Sons,
New York, NY, 1996. ISBN 0-471-12148-7.

[SOHL+95] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Don-
garra. MPI: The Complete Reference. Scientific and Engineering Computation
series. MIT Press, Cambridge, MA, 1995. ISBN 0-262-69184-1. Available in hy-
pertext at http://www.netlib.org/utk/papers/mpi-book/mpi-book.html.

[Sri95] Raj Srinivasan. RPC: Remote procedure call protocol specification version 2.
Internet Request for Comments #1831, August 1995. Available as http://
www.cis.ohio-state.edu/htbin/rfc/rfc1831.html.

[Sun90] Vaidyalingam S. Sunderam. PVM: A framework for parallel distributed com-
puting. Concurrency—Practice and Experience, 2(4):315–339, December 1990.

[Sun97] Sun Microsystems, Mountain View, CA. JavaBeans, July 1997. Available at
http://www.java.sun.com/beans.

[SZ90] Michael Stumm and Songnian Zhou. Algorithms implementing distributed
shared memory. IEEE Computer, 23(5):54–64, May 1990.

[Tan96] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, Upper Saddle
River, NJ, third edition, 1996. ISBN 0-13-349945-6.

[Tic91] Evan Tick. Parallel Logic Programming. Logic Programming Series. MIT Press,
Cambridge, MA, 1991. ISBN 0-262-20087-2.

[UKGS94] Ronald C. Unrau, Orran Krieger, Benjamin Gamsa, and Michael Stumm. Ex-
periences with locking in a NUMA multiprocessor operating system kernel. In
Proceedings of the First USENIX Symposium on Operating Systems Design and
Implementation, pages 139–152, Monterey, CA, November 1994.

[Wet78] Horst Wettstein. The problem of nested monitor calls revisited. ACM Operating
Systems Review, 12(1):19–23, January 1978.

[Wir77a] Niklaus Wirth. Design and implementation of Modula. Software—Practice and
Experience, 7(1):67–84, January–February 1977.

[Wir77b] Niklaus Wirth. Modula: A language for modular multiprogramming. Soft-
ware—Practice and Experience, 7(1):3–35, January–February 1977.

[YA93] Jae-Heon Yang and James H. Anderson. Fast, scalable synchronization with
minimal hardware support (extended abstract). In Proceedings of the Twelfth
Annual ACM Symposium on Principles of Distributed Computing, pages 171–
182, Ithaca, NY, August 1993.

[ZHL+89] Benjamin G. Zorn, Kimson Ho, James Larus, Luigi Semenzato, and Paul Hil-
finger. Multiprocessing extensions in Spur Lisp. IEEE Software, 6(4):41–49,
July 1989.

