
Analyzing Program Behavior with Cross Layer
Information

Avi Saven1
1University of Rochester

Introduction
• Programs are highly measurable objects

• The code itself can be measured
• Various performance measurements can be taken
• How the program is executed can be recorded (program

traces, memory traces)
• These measurements are highly connected

• Performance measurements happen during the execution of
the binary code

• The binary that is being executed is derived from source
code

• These points identify the two ways we analyze software:
runtime and static behavior

• These measurable aspects of programs, we call
program behavior
• Practically any measurable aspect of a program
• Dynamic Information such as cache performance, or,

memory/register traces
• Static information such as source code, abstract syntax

trees, or disassembly
• There are existing tools that measure certain
program behaviors
• cachegrind, drcachesim can measure cache behavior during

runtime
• valgrind, drmemory can detect memory safety errors during

runtime
• TEMU, BitBlaze can generate instruction and memory

traces by emulating the program

Motivation
• Current tooling is inconsistent, and requires custom
code to interpret and merge results

• Tooling becomes specialized to specific analyses and
becomes difficult to reuse

Methodology

• We propose a new framework for the representation
and querying of program behavior

• This is designed with a few important goals in mind
• Bring together tooling into one unified representation that

can be reused throughout various analyses
• Allow for all queries to be written in a single query language

• Connect static information and dynamic behaviors
of a program into one labeled graph

• Allow queries on the graph to facilitate behavioral
evaluation using a query language

• Use static information to augment dynamic
behaviors for analysis

Figure 1: Visualization of a PBG

Deriving Graphs
• Graph nodes are derived from existing tools
• Graph labels are picked based on the semantic
relationship between information

• DynamoRIO used to dynamically instrument binaries
to collect runtime information
• Instruction Traces
• Memory Traces
• Allocation Traces (malloc/free/realloc/calloc)

• Traces require a notion of time in the graph:
• Program counters aren’t sufficient representation of time:

they are reused in loops and functions called more than once

• Rather, temporal nodes are added to the graph: a
monotonically increasing node with connections to trace
information to give a time reference

• Uses Capstone [5] to generate the disassembly of a
binary

• Imports DWARF information into the graph for
type/function/source and assembly conversion
information

• All items become interconnected in the
labeled graph:
• Cache misses and memory allocations, are connected to a

temporal counter in the graph
• Temporal counters are connected with the instruction and

memory trace in the graph
• Program counters are associated with source and type

information
• Cross-layer information becomes connected by their

semantic relationships.
• Analyses which required custom tooling and
instrumentation now are queries on a graph.

Querying Graphs
• With this framework we can answer questions about
the behavior of our programs using queries

• Several query languages exist for exploring relational
data
• Gizmo [6] is an ES5 JavaScript-based query language,

provided natively by the utilized graph database Cayley [6]
• Soufflé [7] is an implementation of Datalog, which is a

subset of Prolog used for databases and static analysis, it
requires an export of the graph to Datalog facts

Case Study #1
• TCC is a small, self-hosting, C compiler by Fabrice
Bellard

• Using a PBG, can we answer the question: what line
of TCC has the worst cache performance?

• Traditionally, this is done by programs such as
cachegrind or drcachesim
• However, these are specialized utilities, and it’s difficult to

reuse the data produced by these tools
• Additionally, they may require more tooling to answer more

specific questions
• We can answer this question using a PBG:

• Cache trace, instruction trace, disassembly, and, source
code are in the graph

• Finding which line has the worst performance becomes a
query on the graph

• Can be trivially extended to ask more questions about the
cache performance
• Such as: which function has the worst cache performance? which

type has the worst cache performance?

Case Study #2
• Valgrind [4] is a runtime analysis utility for finding
memory safety errors

• What information does Valgrind use?
• Instruction trace: What instructions are executed, and when
• Memory trace: What memory addresses are accessed, and

when
• Allocation trace: What memory is allocated, and when

• These are all pieces of information already in the
PBG
• We can check for memory errors and leaked memory

through a query on the PBG
• Note: not at runtime, rather, is a post-mortem check for

memory errors
• Additionally, because the analysis only a query, we
can extend it to include new information:
• Useless Reallocations

• Memory is often grown/extended in anticipation of new data being
added

• However, if it is grown and not written to, then the growth was a
waste

• By a small extension to our query, we can catch instances of this

Results
• Tests were run a server with the following
configuration:

• CPU: AMD Ryzen Threadripper 2950 @ 2.2GHz
• RAM: 32GB
• HDD: TOSHIBA MG03ACA4 4TB 7200RPM Disk

• Tests were executed on the following selection of
software
• basic: demo program for source/binary validation (6 LOC)
• basic_malloc: demo program for memory allocation issues

(8 LOC)
• structs: demo program for DWARF validation (12 LOC)
• tcc_forth: a TCC compilation of a small Forth interpreter

by Leif Bruder. (1124 LOC)
• sqlite3: a TCC compilation of SQLite 3 (228449 LOC)

• The testing was executed in three stages on each
program
• First, the PBGs were formed (stage c)
• Secondly, a datalog export was made (stage d)
• Thirdly, a query is run on the exported datalog to detect

memory issues (stage q)
• Time spent in userspace, average/maximum memory usage

is collected for each stage

Figure 2: Time of PBG

basic basic_malloc sqlite3structs tcc_forth

101

102

103

104

tim
e

(s
)

c time (s) d time (s) q time (s)

Figure 3: Memory usage of PBG

basic basic_malloc sqlite3structs tcc_forth

105

106

107

m
em

or
y

(k
B)

c max. mem (kB) d max. mem (kB) q max. mem (kB)

Conclusion

• We’re able to correlate cross-layer information into a
single unified representation

• Using the unified representation, it is possible to
execute analyses through queries on the graph, in
order to answer questions without new tools

• Issues come from scale:
• Large program execution generates lots of information,

which leads to performance issues in generating and
querying PBGs

• In the future, it would be beneficial to time/space if
we can take information out of the graph and derive
it at query time.

References
[1] https://bellard.org/tcc/

[2] http://dynamorio.org/dynamorio_docs/page_
drcachesim.html

[3] Song, Dawn, et al. "BitBlaze: A new approach to computer
security via binary analysis." International Conference on
Information Systems Security. Springer, Berlin, Heidelberg,
2008.

[4] Nethercote, Nicholas, and Julian Deward. "Valgrind: a
framework for heavyweight dynamic binary instrumentation.
ACM Sigplan notices 42.6 (2007): 89-100

[5] http://www.capstone-engine.org

[6] https://cayley.io

[7] Jordan, Herbert, Bernhard Scholz, and Pavle Subotić. "Soufflé:
On synthesis of program analyzers." International Conference
on Computer Aided Verification. Springer, Cham, 2016.

Undergraduate Research Competition, April 17th 2020, Rochester, NY

https://bellard.org/tcc/
http://dynamorio.org/dynamorio_docs/page_drcachesim.html
http://dynamorio.org/dynamorio_docs/page_drcachesim.html
http://www.capstone-engine.org
https://cayley.io

