CSC2/452 Computer Organization
Floating Point

Sreepathi Pai
URCS

September 19, 2022

Outline

Administrivia

Real Numbers

The IEEE Floating Point Standards

Arbitrary Precision

Outline

Administrivia

Announcements

» Homework #2 is out
» Due this Wednesday IN CLASS.
> Assignment #1 out

» Due next week, Monday Sep 26 at 7PM.
» This assignment builds in time for getting your environment
sorted out: CSUG accounts, etc.

Outline

Real Numbers

Real Numbers

> R
» infinite (just like integers)
» but they are different infinity (uncountable)
» There are infinite real numbers between any two real numbers

> How do we represent these using a finite, fixed number of
bits?

» Say, 32 bits

The problem

» Assume 5 bits are available
» Consider 17: 10001
» Consider 18: 10010

» Where shall we put 17.57
» No bit pattern "halfway” between 10001 and 10010

One option

» Consider only deltas of 0.25, 0.5, 0.75
» Then

> 17.00: 10001
> 17.25: 10010
> 17.50: 10011
> 17.75: 10100
> 18.00: 10101

» This is the basis of the idea of fixed point

» Can't represent all numbers
» Fixed accuracy

» Used widely in tiny computers

Representing Real Numbers

> We cannot represent real numbers accurately using a finite,
fixed number of bits

» But do we need infinite accuracy?
» How many (decimal) digits of precision do we use?

» In our bank accounts (before and after the decimal point?)
» In engineering?
> In science?

On magnitudes

» Smallest length
> Planck length, on the order of 1073 (would require 35 decimal
digits)
» Smallest time
» Planck time, on the order of 10~%
> Width of visible universe

» On the order of 10
» Lower bound on radius of universe: 10%7

On precision

» Avogadro's number: 6.02214076 x 1023
» So, actually: 602214076000000000000000
> 7 =3.1415... x 10°

» NASA requires about 16 decimal digits of *
» We know about a trillion

"https://blogs.scientificamerican.com/observations/
how-much-pi-do-you-need/

https://blogs.scientificamerican.com/observations/how-much-pi-do-you-need/
https://blogs.scientificamerican.com/observations/how-much-pi-do-you-need/

Scientific notation for numbers

» The scientific notation allows us to represent real numbers as:

significand x bage®Ponent

» For Avogadro's number:

» Significand: 6.02214076

» Significand is scaled so always only one digit before the
decimal point

» Base: 10

» Exponent: 23

Binary Scientific Notation

» We can use scientific notation for binary numbers too:
1.011 x 23

» Here, the number is:
> (1x20+0x21+1x2724+1x273)x23
> (1x2BZ4+0x22+1x21+1x20) =11y
» Components:
» Significand: 1.011
> Base: 2
» Exponent: 3

Binary Scientific Notation: Example #2

> Now with a negative exponent:
1.011 x 273

» Here, the number is:

> (1x20940x27 41 x2724+1x273)x273

> (1x2340x2*+1x2541x279)

> (0.12510 + 0 + 0.062510 + 0.0312510) = 0.171875
» Components:

» Significand: 1.011

> Base: 2

» Exponent: -3

Some design notes

» Significand contains a radix point (i.e. decimal point or binary
point)
» But it's position is fixed: only one digit before the radix point
» In binary scientific notation, this is always 1 (why?)
» We don’t need to store the radix point
» So significand can be treated as an integer with an implicit
radix point
» Base is always 2 for binary numbers
» No need to store this
> Exponent is also an integer
» Could be negative or positive or zero

Design notes (continued)

» So (binary) real numbers can be expressed as a combination
of two fields:
> significand (possibly a large number, say upto 10 decimal
digits)
> exponent (possibly a smallish number, say upto 444¢)
» would allow us to store numbers with at least 10 decimal digits
of precision, upto 44 decimal digits long

> We'll also need to store sign information for the significand
and the exponent
» How many bits?

» for 10 significant decimal digits? e.g. 9,999,999,999
» for max. exponent 50147
> plus two bits for sign (one for significand, one for exponent)

Design notes (continued)

» How many bits?
» for 10 significant decimal digits? e.g. 9,999,999,999: about 34
bits
» for max. exponent 507 about 6 bits
» plus two bits for sign (one for significand, one for exponent)

> Total: 34 + 6 + 2 = 42 bits

» Could be implemented as a bitfield
» But 42 is between 32 and 64, not efficient to manipulate

» What format should we use to store negative significands and
exponents?
> sign/magnitude
» one's complement
» two's complement
» other?

Bitfield Design Constraints

> Ideally should fit sign, significand and exponent in 32 bits or
64 bits

» Easier to manipulate on modern systems
» Arithmetic operations should be fast and “easy”
» Comparison operations should be fast and “easy”

» e.g. should not need to extract fields and compare separately
» useful for sorting numbers

» Should satisfy application requirements

P esp. with accuracy, precision and rounding
» should probably be constraint #1

Outline

The IEEE Floating Point Standards

|EEE 754 32-bit floating point standard

» Total size: 32-bits

» Also called “single-precision”
» On most systems, the C type float is single-precision

» Significand: 24 bits, roughly 7 significant (decimal) digits of
accuracy
> Sometimes called (wrongly) the Mantissa

» Exponent: 8 bits, from 27126 to 2127 (roughly 10738 to 1038
(decimal))
» Sign bit: 1 sign bit for the significand
» What about sign bit for the exponent?
» Also supports special representations:

» for +00 and —oo
» For “not-a-number” Nal, e.g. for representing (0/0)
> “denormals”

» Note: 24 +8+ 1 = 33, not 32

Representing the significand

1.1001001000011111101 1011

» 24 bits of significand
» Normalized form, only one digit before the radix point
> Change the exponent until this is achieved (normalization)
» That digit must be non-zero
> Always 1
> Hence, do not need to store it!
» Only use 23 bits for the magnitude
» In example, only 1001001000011111101 1011 is stored
» Uses sign/magnitude notation (not one's or two's
complement)
» 1 bit for sign (0 for +, 1 for —)
> 23 bits for magnitude + one always 1 implicit bit (not stored)

Appreciating Precision

One weird trick to make money from banks:
#include <stdio.h>

int main(void) {

float f£f;
int i;

b
f

16777216.0;
f + 3.0;

printf ("%f\n", £);
}

» Note that 16777216 is 224

» What is the value of f that is printed?

> A:16777216.0

» B: 16777219.0

> C: 16777220.0

» D: something else
» E: undefined

More Surprises

#include <stdio.h>

int main(void) {
float f£;
int i;

f = 16777216.0;
for(i = 0; i < 2000; i++) {

f=£f+1.0;
// printf("%f\n", f) // uncomment to see what is happening

printf ("%f\n", £);
}
» What is the value of f that is printed?
> A: 16777216.0
> B: 16779216.0

» C: something else
» D: undefined

This is not C specific!

» Integers in Python behave differently from C
» Don't overflow, are always signed
P> Python’s integers are like mathematical integers
» Very few languages implement mathematical reals though.

» Most use IEEE 754
» Python, Javascript, Java, etc.

Rounding

» |EEE floating point rounds numbers that cannot be exactly
represented
» For an operation & (where @ could be any of mathematical
+, =, /7 X)
» the standard says x @ y — Round(x @ y)
» Four rounding modes

> Round towards nearest (also known as round towards even,
and default)

» Round towards zero

» Round towards +o0

» Round towards —oo

What's happening

> 16777216.0 4 1.0 is unrepresentable
» By default, rounding mode is round to nearest
» Nearest is 16777216.0
» No change!
> Why it is also called round to even
» If an unrepresentable value is equidistant between two
representable values
P It is not possible to say which is “nearest”
» |EEE standard picks the even value between the two
representable values
» This makes floating point arithmetic non-associative
> (a+b)+c#a+(b+c)
> ((a+1.0)+1.0) # (a+ (1.0 + 1.0))

Representing the Exponent

> 8-bit wide bitfield

>
>

Can store 256 values
Must store values from -126 to 127 (that's 254 values)

» Uses biased representation

>

>
>
>
>

To store x, we actually store x + 127 in 8 bits

So 127 is stored as 254

And —126 is stored as 1

No sign bit required!

So field actually contains values from 1 to 254 to represent
—126 to 127

» The biased values 0 and 255 are used to indicate special
numbers

Why biased? Comparing exponents

Which is greater?

1.011 x 273

1.011 x 213

> Note -3 in biased notation is —3 + 127 = 124 = 0111 1100,
> Note 3 in biased notation is +3 + 127 = 130 = 1000 0010,

Putting it altogether

» Three bit fields
» s: Significand Sign (1 bit)
» M: Significand (23 bits)
> E: Biased Exponent (8 bits)
P> 6 possible ways to order them
s, M, E
s,E;M
M;s, E
M,E,s
E,s,M
E,M,s

» Out of familiarity, let’s only consider those where s occupies
higher bits than M

VVYyVYVYYVYY

Comparing Three Formats

» Suppose you have two numbers:
> a2=1.100... x 23
> b=1.010... x 2°
» Which is greater?

» Representation

» Significand: 100..., for a and 010.., for b

» Exponent: 3 4+ 127 = 130 = 10000010, and
5+ 127 = 132 = 1000 0100,

» Sign is 0 for both

Comparing Three formats (contd.)

> s M E
» 0 | 100 000 ... | 1000 0010
> 0 | 010 000 ... | 1000 0100
> s EEM

> 0 | 1000 0010 | 100 000 ...
> 0 | 1000 0100 | 010 000 ...

> E.s, M
> 1000 0010 | O | 100 000 ...
> 1000 0100 | O | 010 000 ...

IEEE 754 Single Precision Format

> Uses s, E, M format
» If a number x > y, then its bitwise representation x > y
» When sign bit is same, scan from bit 30 to 0, looking for first
different bit
» When sign bit is different, 1 in sign bit indicates less than 0
(exceptions +0 and -0)
» Can thus compare floating point numbers without having to
extract bitfields!

Representing Zero

0 x 2¥

» Has no leading 1
» Special representation
» Sign bit can be 0 or 1
> Exponent is all zeroes (i.e. it appears to be —127 stored
biased, hence —126 is lower limit)
» Magnitude is all zeroes
> Hence:

» +0: all 32 bits are zero
> —0: sign bit is 1, but all other bits are zero

The smallest normalized single-precision number

+1.000 0000 0000 0000 0000 x 2126

> In IEEE: 0 | 0000 0001 | 000 0000 0000 0000 0000
» | just for visual separator

» That's just 27126
> Approximately, 1.17549435 x 10~38

» What should happen if we divide this by two?
> |e.

(0.0000000000000000000000000000000000000117549435/2)
> (+1.000 0000 0000 0000 0000 x 2-126) /2
> (+1.000 0000 0000 0000 0000 x 2~127)

Let's make it zero!

» Default behaviour on many systems before IEEE754
» Underflow to zero

a = 1.000 0000 0000 0000 0000 x 2126

b = 1.000 0000 0000 0000 0001 x 2126

» What is a — b?
» Remember, a # b

What would x/(a — b)?

vy

v

Denormals

» a = 1.0000000 000000000000 x 2126

» b = 1.0000000 000000000001 x 2~126

» a—b=01111111111111111111 x 27126
» Numbers of this form are called denormals or subnormals
» They have a 0 before the radix point

» [EEE 754 specifies how to store denormals:

» s, sign as usual
» E, exponent is zero
» M, the significand is non-zero

» This allows “gradual underflow” to zero

» Some systems detect denormals and perform arithmetic in
software
> Slow!

Representing Infinities

0 1111 1111 000 0000 0000 0000 0000

» In the above representation,
» Sign: 0
» Exponent: 255
» Significand: 0
> Exponent
» 0 indicates either zero or a subnormal
» 1 to 254 indicates normalized exponent -126 to 127
» 255 indicates either infinity or NaN
> With significand zero:

» Exponent 255 indicates +0o or —oo (depending on sign)
> —00 < x < 400 where x is any representable number

Representing NaNs

0 1111 1111 XXX XXXX XXXX XXXX XXXX

» In the above representation,

» Sign: 0

> Exponent: 255

» Significand: # 0 (i.e. the x bits are not all zero)
> With significand non-zero:

> Exponent 255 indicates NaN (not-a-number)

» Produced by operations like 0/0, co/o0, etc.
> Nals propagate:

» Any operation involving a NaN results in a NaN

Addition in Floating Point

Add

a = 1.000 0000 0000 0000 0000 x 23

to:

b = 1.000 0000 0000 0000 0000 x 2*

Equalizing exponents

» Exponents for a and b are different, so equalize them

» Shift one of them
» The shifted representation is internal
» Only the result after addition is visible

» b = 10.00 0000 0000 0000 0000 x 23
» a+ b= 11.0000000000 00000000 x 23
» Normalized, 1.100 0000 0000 0000 0000 x 2*

Double-precision

» 64-bit floating point format
» Significand: 53 bits (52 stored), around 17 decimal digits of
precision
» Exponent: 11 bits (biased by 1023)
» Sign: 1 bit
» In C, usually double
» Range: 271022 to 21923 for normalized numbers
> Roughly 1073% o 10308

A Programmer’s View of Floating Point

» When translating algorithms from math to code, be wary
» Computers use floats, not real numbers!
» Two major problems:

» Non-termination (usually because exact == is not possible)
» Numerical instability (approximation errors are “magnified”)
> If you deal with computational science or use numerics
extensively, educate yourself
» Resources at the end
» Or take a Numerical Analysis class (primer at the end)

How the machine supports floating point

» A math co-processor called
the “floating point unit”

» Back in the day, a

separate processor CPU
» The Intel 387 is a classic

» For machines without a -

coprocessor, everything was
done in software

» Sometimes called

“softfloat”
> Still used to handle RAM

denormals on some

processors

» These days, integrated into
the CPU as FPUs

Some excitement these days

» Intel, NVIDIA and AMD recently announced support for FP8
P 8-bit floating point numbers

» Follows the introduction of FP16 a few years ago
» 16-bit floating point numbers

» Driven by the needs of deep learning programs and memory
constraints

» Also, “correctness” is not number #1 priority for DL

Outline

Arbitrary Precision

Python Integers

» Python only has signed integers (like Java)

v=1
for i in range(256):
v=vok2

print(v)

» What is the value of v that is printed?

» A: Undefined
> B: 2256 mod 2% (assuming 64-bit integers)
> (C:2%6

» Reference: Python Numeric Types

https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex

Arbitrary Precision Floating Point

The bc calculator in Linux:

bc 1.07.1

Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006, 2008, 2012-2017
This is free software with ABSOLUTELY NO WARRANTY.

For details type ‘warranty’.

16777216.0+1.0

16777217.0

16777216.0+3.0
16777219.0

f = 16277216.0
for(i = 0; i < 2000; i++) { f += 1.0; }

f
16279216.0

Summary

» Take away: floating point numbers are NOT real numbers
» Reference: Chapter 2

For further study:
» Link to An Interview with the Old Man of Floating-Point
> |EEE754 won William Kahan the Turing Award

» Definitely read:
» Goldberg, What Every Computer Scientist should Know about
Floating-Point Arithmetic, ACM 1991
» Stadherr, High Performance Computing, Are we just getting
wrong answers faster?
» Trefethen, Numerical Analysis

https://people.eecs.berkeley.edu/~wkahan/ieee754status/754story.html
https://dl.acm.org/citation.cfm?id=103163
https://dl.acm.org/citation.cfm?id=103163
https://www3.nd.edu/~markst/cast-award-speech.pdf
https://www3.nd.edu/~markst/cast-award-speech.pdf
https://people.maths.ox.ac.uk/trefethen/NAessay.pdf

	Administrivia
	Real Numbers
	The IEEE Floating Point Standards
	Arbitrary Precision

