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Administrivia

I Homework #6 is due today
I Homework #7 is out today

I Due next Wed, Nov 16 IN CLASS

I Reading for this week is up.
I Virtual memory in Linux

I Assignment #4 will be out next Monday
I Due date: Tuesday, Nov 22, 7PM
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Virtual Memory Protections

I Different processes have distinct address spaces
I Virtual addresses from 0 onwards ...

I MMU translates virtual addresses to physical addresses
I Physical addresses may be shared
I Different virtual addresses may map to same physical addresss
I Translation determined by structures called page tables

I Translation performed at granularity of a page (usually 4096
bytes)



Setup and Usage

I Page tables are setup by the OS kernel
I They live in memory

I Your process can change page table entries
I by calling mmap
I by calling mprotect

I These functions are implemented ultimately by the kernel
I Why?



The Big Question

Why is the OS kernel necessary?



The Big Question: Rephrased

Why aren’t processes allowed to directly modify page table entries?



The Real Question

How do we prevent processes from performing potentially unsafe
actions (like changing page table entries) directly?
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Privilege Level

I Privilege levels are a mechanism to restrict activities
performed by processes

I Many processors support multiple privilege levels
I x86 supports at least 4 visible to programmers

I All code runs at some privilege level

I Different privilege levels support different abilities

I For example, instructions can be distinguished into
“unprivileged” and “privileged”



x86 Privilege Model

I x86 has 4 privilege levels
organized as “rings”
I Innermost ring (Ring 0) is

most privileged, runs OS
kernel

I Outermost ring (Ring 3)
is least privileged, runs
applications

I Most operating systems do
not use the other rings

Level 0

Level 1

Level 2

Level 3

Protection Rings

Operating

Operating System
Services

System
Kernel

Applications



The modern x86 Privilege Model

The operating systems

Ring 0 (Linux)

Ring 3 (User)

SMM ½ kernel. Traps to 
8086 16-bit mode.

Management Engine, ISH, IE. 
Higher privilege than Ring -2. 
Can turn on node and reimage 
disks invisibly. Minix 3.

Ring -1 (Xen etc.)

X86 CPU you know about X86 CPU(s) you don’t know about

Code you 
know 
about

Code 
you 
don’t 
know 
about

Ring -2 kernel and ½ kernel 
Control all CPU resources. 
Invisible to Ring -1, 0, 3

UEFI kernel running in 
64-bit paged mode.

Ring -3 kernels

Minnich et al., Replace your exploit-ridden firmware with a Linux
kernel, OSSEU 17 (video)

https://schd.ws/hosted_files/osseu17/84/Replace UEFI with Linux.pdf
https://schd.ws/hosted_files/osseu17/84/Replace UEFI with Linux.pdf
https://youtu.be/iffTJ1vPCSo


RISC-V Privilege Model

I The RISC-V processor is the “fifth” RISC design out of
Berkeley
I Completely open design (https://www.risc-v.org/)

I Supports three privilege levels
I User/Application (U)
I Supervisor (S)
I Machine (M)

I Privilege ordering
I M has highest privilege, and can do anything
I S has medium privilege, and can do most OS functions
I U has least privilege, and runs user applications

https://www.risc-v.org/


General Operation of Privilege Levels

I OS sets up privilege levels on boot
I OS transitions to a lower privilege level and begins executing

user-space programs
I On Unix systems, this is the init process (PID 1)
I The init process ultimately runs the shell (i.e. the

command-line on Linux)

I Processes invoke system calls to get the OS to perform
actions on their behalf
I A system call is like a function call, except it transitions

between privilege levels

I Attempts by processes to directly perform actions that require
higher privileges are detected by CPU
I Usually delivers a general protection fault on x86



What requires privileges (on x86)?

I Executing “privileged” instructions
I INVLPG
I MOV (to and from control registers, CR0–8)
I MOV (to and from debug registers, DR0–7)
I RDTSC (if it is restricted by OS kernel, otherwise it is

unprivileged)
I IN/OUT instructions
I 9 more (see Section 5.9, Privileged Instructions in the Intel

System Developers Manual)

I Reading/Writing pages that have the U/S (user/supervisor
bit) set to 0
I These are called “supervisor-mode” pages/addresses
I Page tables have these set to 0

I Memory-mapped I/O
I Usually though page table permissions



CPU privileges != OS privileges

I CPU privileges are not the same as OS-level privileges/users
I root’s programs also run in user mode

I CPU has no idea of OS-level users



Beyond Privileges

I Capabilities
I Hardware capabilities allow programs that possess them to

perform actions associated with those capabilities
I Example: ARM’s Morello processors with CHERI capabilities.

I Hardware Protection Domains
I Carve out isolation domains for programs
I A program inside the isolation domain is private, even from the

OS kernel
I Examples: Intel SGX, ARM TrustZone, etc.

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-morello.html
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System Call

I Like a function call, except it changes privilege levels
I From user mode to supervisor mode

I Older x86 mechanisms
I JMP, CALL, INT
I Look up descriptor tables for the destination address
I Table entry could describe a “gate” that would allow change

of privilege levels
I ... (lots of details elided)
I Lots of book keeping involved – this was a very general

mechanism

I Newer x86-64 mechanism
I SYSCALL and SYSRET instructions



SYSCALL

I SYSCALL changes to privilege level 0 and runs code at an
address specified in the IA32 LSTAR machine-specific register
I This code is inside the OS kernel

I Saves return address (instruction after SYSCALL) in %rcx

I Saves %rflags in %r11, and masks out certain flags
I Changes code segment and stack segment

I Segments are an x86 oddity, they allow partitioning memory
into segment + offset pairs

I Most OS uses flat addressing, ignoring segments
I In flat addressing, the OS may use the same segment

I OS kernel code is now running at privilege level 0



SYSRET

I Returns from system call, switching back to privileged mode

I Switches back to privilege level 3

I Restores %rflags, and returns to address stored in %rcx

I User program now resumes in privilege level 3



Programmer’s View of System Calls

I Invoking system calls is very system specific
I x86-64, SYSCALL
I x86, INT 0x80 (for Linux)

I Method #1: Just use the libc wrapper
I Most portable
I The C Standard Library wraps many system calls as functions
I This is normal way of using them

I Example: mmap() is a libc wrapper around the mmap system
call



Advanced methods: Use the GNU syscall wrapper

I Method #2: Use GNU libc’s syscall function
I Not to be confused with the SYSCALL instruction
I Useful when no wrapper exists (yet)
I Less portable (may not be supported by non-GNU libc)

I Example: syscall(SYS mmap, ...) will call the mmap

system call



Advanced methods: Use assembly language

I Method #3: Use inline (or external) assembly
I Write assembly code
I Maybe you don’t have access to libc?
I Least portable, most direct

I Example:
movq $9, %rax # 9 is syscall number for mmap on x86-64
... # pass arguments to mmap, using standard ABI
syscall



Summary

I Privilege levels prevent programs from doing anything they
want
I Execute privileged instructions
I Read/write arbitrary memory addresses

I System calls allow the OS kernel to perform actions on behalf
of programs
I Like a function call, but more expensive
I Involves changing privilege levels
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Process

I A process is a running program
I has a virtual address space distinct from other processes
I has a stack, heap, code, etc.

I Constrast to a thread, which is sometimes called a
“light-weight process”
I A process can consist of multiple threads of execution
I All threads share the same virtual address space
I Each thread has its own stack, but shares the heap and code

with other threads
I We will revisit threads later in this course



Creating Processes in Unix

I Two primary methods:
I The fork system call
I The exec* family of system calls



The fork system call

I The fork system call duplicates a process

I The duplicate is called a child process, whereas the original is
called a parent process

I Execution in both processes continues after the fork call
I Usually noted as “fork returns twice”, once in parent and

once in child

I Return value in child is 0

I Return value in parent is child’s process ID



After the fork

I The child inherits an exact copy of the parent’s address space
I However, all changes it makes from that point onwards are

not reflected back to the parent
I Except when pages are shared

I Similarly, changes made by parent after the fork are not
reflected in the child



Forking is cheap

I On Unix systems, the primary method of concurrency is to
fork processes

I Need to handle 100 web requests?
I Fork 10 processes to handle 10 requests each

I Other operating systems use threads for concurrency
I Process creation can be very expensive on those OSes

I How is process creation so cheap on Unix-like systems?



Virtual Memory to the Rescue: Copy-on-write #1

Private !
copy-on-write object!

Physical!
memory!

Process 1!
virtual memory!

Process 2!
virtual memory!

I After forking, the physical pages of the two processes are
placed into “copy-on-write” mode

I But no copies are made – only permissions changed to
read-only!



Virtual Memory to the Rescue: Copy-on-write #2

Private  !
copy-on-write object!

Physical!
memory!

Process 1!
virtual memory!

Process 2!
virtual memory!

Copy-on-write!

Write to private!
copy-on-write!

page!

I When a write actually happens, only the page written to is
copied/duplicated

I There are now two physical pages, one for each process, and
they will have different content



Virtual memory and Copy-on-write

I On Linux, fork is implemented using copy-on-write
mechanisms

I When a process calls fork, Linux only has to:
I set all page table entries to read only
I duplicate all page tables
I create any OS-level data structures for the child (e.g. process

ID)
I Note: no copies of physical pages made!

I When either the parent or child writes to a page
I Linux makes a physical copy of the page, and changes the

page to read-write if possible.
I Write can continue on new page



Other uses of fork

I fork can be used to make copies of a process
I But, how to run other programs?

I I.e. load a different program from disk as a new process



The exec* family of functions

execve(filename, argv, envp);

I Typically, execve is used a representative of this family
I The function takes 3 arguments

I filename contains the filename of the program
I argv is an array of strings containing arguments to the

program
I envp is an array of strings containing environment variables for

the program

I Both argv and envp contain NULL as the last element

I argv[0], contains by convention, the name of the program
I If execve is successful, it does not return

I Current process is replaced by newly loaded program



Running another program

I To run another program:
I fork and create a child process
I The child process then executes execve to replace itself with

the new program

I Or:
I Just call execve



execve example

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

char *newargv[] = { NULL, "/", NULL };
char *newenviron[] = { NULL };

newargv[0] = "/bin/ls";

execve(newargv[0], newargv, newenviron);
perror("execve"); /* execve() returns only on error */
exit(EXIT_FAILURE);

}

I This code calls /bin/ls /

I Example adapted from the execve manual page



execve example with fork, in child

if((pid = fork()) == 0) {
/* in child */
execve(newargv[0], newargv, newenviron);
perror("execve"); /* execve() returns only on error */
exit(EXIT_FAILURE);

}

I Execute fork, and test if we’re in parent or child

I If we’re in child, call execve to run the new program



execve example with fork, in parent

else {
/* in parent */
int wstatus;

waitpid(pid, &wstatus, 0);

if(WIFEXITED(wstatus))
printf("normal termination. return value: %d\n",

WEXITSTATUS(wstatus));
}

I Meanwhile in parent, we’ve received a process ID for the child
I Wait for the child to terminate, using the wait system call

I Detect if the child exited normally, and retrieve its return value



fork is asynchronous

I A fork executes asynchronously
I The child process is started by a fork, but:

I may not start running until much later, OR
I may have already finished by the time control returns to

parent, OR
I may actually start after parent finishes, etc.

I I.e., processes run concurrently, and no ordering can be
assumed
I Unless you explicitly synchronize with a child process
I Take CSC2/458 or CSC2/456



Defunct (“Zombie”) Processes

I The kernel assumes somebody is interested in a process’s
information after it terminates
I e.g. return value

I Therefore, a process that exits or is killed is not fully cleaned
up
I Memory, files, etc. are freed and/or closed
I But PID is not freed

I The process is in a defunct state, usually referred to as a
zombie state, waiting for a reaper
I If the parent process has not called waitpid, the zombie will

hang around until it does
I If the parent process terminates without calling waitpid, the

child is “reparented” to init, which will reap it

I What happens if init dies?



Summary

I Processes can be created by fork and execve

I fork is especially cheap on Unix-like systems
I Thanks to copy-on-write



References and Acknowledgements

I Volume 3 of the Intel Architectures Software Developers
Manual contains details on protection
I Figure of rings from this manual

I The RISC-V Instruction Set Manual: Volume II: Privileged
Architecture

I Section 2 of the Linux Programmers Manual covers system
calls

I Portions of Chapter 8 and 9 of the textbook cover creating
and managing processes, and also the role of VM
I Figure of copy-on-write from the textbook

https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
http://man7.org/linux/man-pages/man2/syscalls.2.html
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