
CSC2/455 Software Analysis and

Improvement

Intermediate Representations (IRs)

Sreepathi Pai

January 22, 2020

URCS

Outline

Introduction

Midend

Miscellaneous

Outline

Introduction

Midend

Miscellaneous

Classic Compiler Architecture

frontend
midend

backendlanguage-dependent machine-dependent

produces
PARSE TREE

and
ABSTRACT SYNTAX TREE

produces
ASSEMBLY

Outline

Introduction

Midend

Miscellaneous

What does the midend do?

• Mostly language and machine independent analyses

• Majority of analyses run in this stage

• Multiple intermediate representations used

• Starts from abstract syntax tree

• Usually stops before instruction scheduling/register allocation

• Examples: AST, CFG, DDG, PDG, etc.

• There is no one Intermediate Representation

• although people have tried ...

Running example

x =
−b ±

√
b2 − 4ac

2a

In Python (assume math.sqrt is sqrt):

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)

Abstract Syntax Tree

=

x /

b

-

-

sqrt

*

-

2 a

* *

b b * c

4 a

AST as a list

ast = [’=’,
[’x’,
[’/’,
[’-’,
[’neg’, ’b’],
[’sqrt’,
[’-’,
[’*’, ’b’, ’b’],
[’*’,
[’*’, ’4’, ’a’],
’c’

]
]
]
],
[’*’, ’2’, ’a’]

]
]
]

• What does this remind you of?

Slightly less LISPy

class Node(object):
operator = None
left = None
right = None

• Actual ASTs are not binary trees!

• Will usually have list of descendants instead of left and

right

• descendants may be more specific, while may have

condition and body

Linear Forms

• ASTs imply treewalking

• Works best when manipulating source code

• e.g. Source-to-source compilers

• Or when control flow is not important

• Other lower level forms are “closer to machine”

• Stack machines

• 3 address code

Stack Machine

push a
push 2
mul
push c
push a
push 4
mul
mul
push b
push b
mul
sub
sqrt
push b
neg
sub
div
pop x

How do you produce stack machine code from an AST?

Generating Stack Machine Code

push a
push 2
mul
push c
push a
push 4
mul
mul
push b
push b
mul
sub
sqrt
push b
neg
sub
div
pop x

=

x /

b

-

-

sqrt

*

-

2 a

* *

b b * c

4 a

Stack machines

• Compact in size

• Easy to execute

• BUT, fixed order of execution

• Bad for parallelism

• Hard to analyze

• Nevertheless, widely used:

• Java bytecode

• WebAssembly

3 address code

• 3 “addresses”

• Two source operands

• One destination operand

• Addresses are actually names generated by compiler

Our example in 3 address code

Assume machine is not a strict load/store architecture (so memory

can be referenced directly):

t1 <- -b

t2 <- b * b
t3 <- 4 * a
t4 <- t3 * c
t5 <- t2 - t4
t6 <- sqrt(t5)

t7 <- t1 - t6
t8 <- 2 * a
t9 <- t7 / t8

x <- t9

(Here ‘<-’ is ←, signifying assignment)

How do we produce stack 3 address code from the AST?

Producing 3 address code

t1 <- -b

t2 <- b * b
t3 <- 4 * a
t4 <- t3 * c
t5 <- t2 - t4
t6 <- sqrt(t5)

t7 <- t1 - t6
t8 <- 2 * a
t9 <- t7 / t8

x <- t9

=

x /

b

-

-

sqrt

*

-

2 a

* *

b b * c

4 a

Data Dependence Graphs (DDGs)

• DDGs track “data flow” as

an acyclic graph

• Strict (partial) order in
which operations must be
performed

• Can’t use a value that has

not been calculated yet!

• But multiple orders may be
allowed!

• Topological sort

• Will revisit DDGs when we

discuss instruction

scheduling

t9

x

t7 t8

t1 t6

t5

t2 t4

t3

DDG Example

t1 <- -b

t2 <- b * b
t3 <- 4 * a
t4 <- t3 * c
t5 <- t2 - t4
t6 <- sqrt(t5)

t7 <- t1 - t6
t8 <- 2 * a
t9 <- t7 / t8

x <- t9
t9

x

t7 t8

t1 t6

t5

t2 t4

t3

Control structures in 3 address code

What should the 3 address code for the code below look like?

if n % 2 == 0:
n = n / 2

else:
n = 3 * n + 1

The AST for if

if

== = =

% 0 n / n +

n 2

3 n

* 1n 2

• An if AST node has a condition, true-code, and

false-code

3 Address Code for if

t1 <- n % 2
if (t1 != 0) goto L1

t2 <- n / 2
n <- t2
goto L2

L1:
t3 <- 3 * n
t4 <- t3 + 1
n <- t4

L2:

• 3 address code can contain:

• (simplified) conditional branches

• unconditional branches

Control Flow Graphs (CFGs)

• “Hybrid” representation

• Linear code + Graph

structure

• Each node in the CFG is a
“basic block”

• Linear code

• Single entry, single exit

• “Straight-line code”

• Most common form for

analysis

ENTRY

 t1 <- n % 2
t1 == 0

EXIT

 t2 <- n / 2
 n <- t2

 t3 <- 3 * n
 t4 <- t3 + 1

 n <- t4

In this course

• We will write midend + some bits of a backend

• Input language: C

• Output language: C in 3 address form

• Not assembly (maybe extra credit?)

• Using Python library pycparser

For assignments, make sure to review

• Basic data structures

• lists

• trees

• graphs

• Basic data structure traversals

• Infix, prefix, postfix

• Depth-first, breadth-first

• And how to implement them in Python

• Using Python standard libraries is fine

Outline

Introduction

Midend

Miscellaneous

Not-so-classic ‘Compiler’ Architectures

What is this code from TensorFlow doing?

a = tf.constant(2)
b = tf.constant(3)

with tf.Session() as sess:
print("a=2, b=3")
print("Addition with constants: %i" % sess.run(a+b))
print("Multiplication with constants: %i" % sess.run(a*b))

https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/basic_

operations.py

https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/basic_operations.py
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/basic_operations.py

Metaprogramming

• TensorFlow API builds a graph

• directed, acyclic

• similar to the DDG

• very common technique

• When sess.run is called, graph is compiled and executed

• Advantages:

• No syntax, no parsing!

• Disadvantages:

• ?

References

• Chapter 5 of Cooper and Turczon

• Up to 5.4 in this lecture, but we will ultimately study the

whole chapter

• (Optional) For a different perspective, Chapter 4 of Muchnick

• Chapters 1–3 are essentially a recap of CSC 2/454

	Introduction
	Midend
	Miscellaneous

