CSC2/455 Software Analysis and
Improvement
Interprocedural Analyses - |l

Sreepathi Pai
Mar 25, 2020

URCS



Interprocedural Analyses
Region-based Analysis Framework
Interprocedural Points-to Analysis

Postscript



Interprocedural Analyses



Cloning-based Context-Sensitive Analysis

for(i = 0; i < n; i++) {

cl: t1 = £1(0);
C2F t2 = £2(243);
c3k t3 = £3(243);
X[i] = t1 + t2 + t3;

}

int f1(int v) {
return (v+1);

}

int f2(@int v) {
return (v+1);

}

int £3(int v) {
return (v+1);

}

e Create a clone for each unique calling context and then apply
context-insensitive analysis
e |s this the same as inlining?
e See textbook for a differentiating example



CFG after context-sensitive cloning

=v+l

£1: retval

=v+1

£2: retval

t3 = retval
td=tl+t2
t5=td+t3
X[i]=t5
i= i+l

The CFG on the left does not distinguish context, the one on the
right does



k-level Context-Sensitive Analysis

for(i = 0; i < mn; i++) {

&g tl = g(0);
G2k t2 = g(243);
3k t3 = g(243);
X[i] = t1 + t2 + t3;
}
int g(int v) {
if(v > 1)
return f(v);
else

return (v+1);

}

int f(int v) {
return (v+2);
}

To what depth shall we clone functions?



k-level Context-sensitive analysis

A function call may be distinguished by its context

e Calling functions or
o Call-sites (i.e. call stack)

If we do not distinguish contexts,

e context-insensitive
e k=0

Different values of k may yield different precision

No value of k may be sufficient

e recursive function calls
e indirect function calls



Some numbers

o If there are N functions in a program, how many calling
contexts are possible
e if no recursion is involved?
e if recursion is involved?



Handling Recursion in Contexts

e Consider nodes in a call
graph
e non-recursive functions

e self-recursive functions @

e mutually recursive
functions
e Look for strongly-connected
components
e trivial (non-recursive)
e non-trivial (the latter two)



Methods to “finitize” Recursion

(2

e Model them using regular expressions
o £(g h i)*]
e Eliminate all call information within SCC

o f g j



Have contexts, will analyze!

e Cloning-based analysis

e Clone functions, once per context
e Followed by context-insensitive analysis

e Summary-based analysis
e (Bottom-up phase) Compute summaries of each function for
an analysis (e.g. constant propagation) in terms of input
parameters
e (Top-down phase) Pass inputs to summaries, one per context
OR merge contexts using meet operator
e Based on Region-based analysis



Region-based Analysis Framework



Region-based Analysis Framework

e Operates on regions of the control flow graph

A region is defined (informally) as a portion of code with a
single entry and single exit

e Basic blocks are regions

Recall we need to iterate (in iterative data flow analysis,
IDFA) because of loops

e Can we get rid of loops in some way?



A region is a subset N of the nodes, and E of the edges of a
(control) flow graph such that:

e There is a header node h that dominates all nodes in N

e If there is a path from m to n that does not go through h,
then me N
e E is the set of edges that connect two nodes n; and ny in N

e edges into h from outside the region are not part of E

Additionally, if the flow graph is reducible, we can organize the
regions into a hierarchy



Reducible Graphs

The T1-T2 definition of reducible graphs:

e T1: Remove all self edges on a node

e T2: If a node n has a single predecessor m, combine them
into a single node x. Edges into m and out of n are connected
to x instead.

e Repeat until neither T1 nor T2 can be applied

A graph is a reducible if at the end of the above procedure the
entire graph is reduced to a single node.



Example: Repeated applications of T2




Example: Application of T1 and T2

BO

l B0+B1+B2+B3+B4

B1+B2+B3+B4 )




Non-reducible (or Irreducible) graphs

e Structured code usually produces reducible graphs
e Can you construct an irreducible graph?

e Textbook details some ways of transforming irreducible graphs
into reducible graphs



Region Hierarchy

e The smallest regions form leaf regions

e Basic blocks are leaf regions

e Using a process similar to T1/T2 we combine regions into
bigger regions

e Until we obtain a single large region

The largest region (i.e. final node) has no loops, and if we could
construct an appropriate transfer function, we could analyze this
region just as we analyze a basic block.



Basic ideas

e If the region consists of a “linear” sequence of basic blocks
e Say B followed by B,, with transfer functions f; and f;
respectively
e We need to construct the composition f, o f;
e This can be extended to regions, i.e. if we have a linear
sequence of regions
e If you encounter alternate paths (akin to join nodes)
e Apply the meet operator on the transfer functions (not the
values!)
e i.e. (i Ar f)(x), which is defined as f;(x) A fa(x)
e Note the second A is the meet operator on data-flow values



Example: Composition for Reaching Definitions

e Recall that reaching
definitions has a gen, kill
form for its transfer
functions

o fp(x) = genp U (x — killp)
e Here:
o fi(x) = {d1,d2} U(x— )
e f(x) = {d3}U(x—{d1})
e The composed function is:
o (Rof)(x)=
{d2,d3} U (x —{d1})
e Which is also in gen—kill
form

BO
dl:x=1
d2:y=2

gen={dl1, d2}
kill={}

l

Bl
d3: x=3

gen={d3}
kill={d1}




For gen—kill form

e Composition for gen—kill form is then
e kill,: Union of all kill sets
e gen,: Union of all gen sets - kill,

o f(x) = geno U (x — killy)



Meet for Reaching Definitions

e Merging BO and B1, we

would get:
o fgo(x) = {d1,d2}U(x—0) - —
e fg1(x) = {d3}uU(x—{d1}) gé;z; d3:x=3
e Recall that A for reaching _
={dl, 2 gen={d3}
definitions is U genkiil:{} } kill={d1}
o (fso A fa1)(x) = \ /
fgo(x) U fg1(x) B2
dd:y=2
o (fgo A fa1)(x) = Y
_ ={d4)
{d1,d2,d3} U (x — 0) )

e genn = gengo U genpy
o Killy = killgo N killgy = 0

f/\(X) = genp U (X — kl///\)



Loop regions for reaching definitions

e Loop region (L) is BH, B1,
and B2 e
a d2:y=2
e If L is not executed: g, 2
o P(x)=x et
e If L is executed once? o
e BH — Bl —+ B2 — BH
(ignore edge from BO to BI
BH) d3:x=3 I
° le(X) _ ﬁflT:((S?;
{d3,d4} U (x — {d1, d2}) l
B2
e If L is executed twice? diy=2
o f2(x) = A(fu(x)) s

o sz(X) =
{d3,d4} U (x — {d1,d2})



Loop regions for reaching definitions (2)

e Loop region (L) is BH, B1,

BO
and B2 @y
e We have: e
o 2(x) = x
o fi(x)= BH
{d3,d4} U (x — {d1, d2})
C sz(X) = fL(fL(X)) d3:Bxl=3
C an(X) = gen=(d3) ®
{d3,d4} U (x — {d1,d2}) k‘”I‘“”
e The gen set for a loop is W2
ry=
simply the gen set of its gene{dd)
kill={d2}

body, and likewise for its kill
set



Dealing with loop regions

e |f the region consists of a loop,

e Compose the transfer functions for the body, obtaining fyody,
e Compute the effect of one iteration (or one cycle), f

e Compute the closure of f, denoted 7*

e f* is the transfer function of the loop region

k n
o f*= /\nZO f
e " is f applied to itself n times
e 9 is loop does not execute, so identity

e Informally:

e Compute the transfer function of not going into the loop
(essentially, identity), meet it with

e Compute the transfer function of executing the loop once, and
meet it with

e the transfer function of executing the loop twice, and meet it
with



Loop regions for Reaching Definitions

fr=fONFLAF
f*=xU (genU (x — kill)) U (gen U (x — kill))...

f*=xU/(genU (x — kill))

f*=xUgenUx
f*=genU(x —0)

For a loop region, in reaching definitions, the transfer function
(i.e., the closure) only generates definitions, but doesn't kill any
definition



Why we need reducible graphs

e In reducible graphs:

e loops are properly nested or are disjoint

e Repeat composition, meet and closure until you obtain the
transfer function for the whole region



The Region-based Analysis Framework

e Compute regions of the flow graph

e Compute, in a bottom-up fashion (from innermost region to
outermost), the transfer functions for each region

e Compute, in a top-down fashion (from outermost to
innermost), the results of the analysis

e Algorithm 9.53 in the Dragon Book
e Work out Example 9.54 in the Dragon book

e Example 12.8 in the textbook uses summary-based analysis for
interprocedural constant propagation



Interprocedural Points-to Analysis



Recall

Recall how we compute and update pointsTo sets from last class...



Flavours

o Flow-sensitive/Flow-insensitive
e Context-insensitive

o Context-sensitive

e Cloning-based
e Summary-based



What the textbook describes

e Flow-insensitive
e Context-sensitive

e With non-trivial SCCs treated as a single node

e Cloning-based

Additionally, the Dragon book formulates the points-to analysis as
a (datalog) logical formula to be solved.



Dynamic Call Graph Construction

class t {
t n() { return new r(); } /* call site g */
}

class s extends t {
t n() { return new s(); } /* call site h */

class r extends s {
t n() { return new r(); } /* call site i */

main() {
t a =mnew t(); /* call site j */
a = a.n();

}

What is a potential call graph for a.n() from the points-to
relationships?



Postscript



References

e Chapter 12 of the Dragon Book
e Region-based analysis is from Chapter 9, Section 9.7
e Paper recommended:

e Reps et al. " Precise interprocedural dataflow analysis via
graph reachability”



	Interprocedural Analyses
	Region-based Analysis Framework
	Interprocedural Points-to Analysis
	Postscript

