CSC2/455 Software Analysis and
Improvement
Conclusion

Sreepathi Pai
Apr 26, 2023

URCS



What we've covered
What we've not covered

Where to go from here?



What we've covered



Data Flow Analysis

e 3-address code, CFG
e Value Numbering
e Global Iterative Data Flow Analyses
e Live, Reaching Definitions, Available Expressions, Very busy
Expressions
e Constant Propagation
e Dominators
e Foundations of DFA
e Lattices, Monotonicity, Distributivity
e Proofs of termination, etc.
e Static single assignment (SSA) form



Optimizations

Partial Redundancy Elimination

Instruction Scheduling

Instruction Selection

Register Allocation



Type checking and inference

Typing rules

e Type equations

Unification

Handling polymorphism



Interprocedural Analysis

e Context-sensitivity
o Flow-sensitivity

e Points-to analysis



Region-based Analysis

e Reducible Graphs
e Region-building

e Creating summaries of analyses



Loop Analysis

How do different iterations of a loop access data?

Most useful in automatic parallelization of programs

e |f data accesses don't overlap, can execute the iterations at the
same time on different processors

A difficult problem, with the Integer Linear Programming
(ILP) at the core

e ILP is NP-complete

Lecture slides from my 2018 edition of this course are
available

e Newer techniques used “polyhedral compilation”



Abstract Interpretation

e Abstraction

e Denotational Semantics
e Abstract Interpretation

e Signs domain
e Intervals domain



Model Checking and Symbolic Execution

Bounded Model Checking

Kripke Structures

Liveness and Safety Properties
e CBMC

e KLEE

Angr



Program Verification using Hoare Logic

Basic ideas of verification

Loop Invariants

Axiomatic Semantics
o {P}C{Q}

Generating verification conditions

Using program provers
e Dafny

Using theorem provers?



What we've not covered



Backend Optimizations

e Software Pipelining



Where to go from here?



o Compilers
e Diffuse: LLVM, GCC
e Companies: Intel (icc), Microsoft (Roslyn, open-source), IBM
(XL)
e Specialist: Cray/HPE, PGI/NVIDIA, etc.
e Every company at large enough scale has a compiler group
(Google, Facebook, Amazon)
e Program Analysis

e Facebook, Google, Amazon, etc.
e Lots more (search for “static analysis tools”)

e Matthew Gaudet's Compiler Jobs list


https://mgaudet.github.io/CompilerJobs/

Graduate school

e Verification of Parallel and Concurrent Programs
e Verification of very large code bases

e Lots of theoretical and engineering problems in this field



Summer Suggestions

Read all the CACM articles I've linked to!

Get familiar with a real-world compiler (e.g., LLVM)

Identify and start using program analysis tools for your
favorite programming language

Use and learn Dafny
Model checking using TLA+ or Alloy

e CACM article on Alloy, Alloy: A Language and Tool for
Exploring Software Designs
e Great topics for an independent study


https://cacm.acm.org/magazines/2019/9/238969-alloy/fulltext
https://cacm.acm.org/magazines/2019/9/238969-alloy/fulltext

	What we've covered
	What we've not covered
	Where to go from here?

