
Compiler Correctness

Jingyu Qiu

University of Rochester

April 17, 2024

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 1 / 32

Compiler pipeline

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 2 / 32

The compilation process [Leroy(2019)]

In general: any translation from a computer language to another one.

More specifically:

automatic translation

from a high-level language suitable for programming by humans

to a low-level language executable by machines

with a concern for efficiency (”optimizing” compilers)

often used as a black-box and assume correctness

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 3 / 32

Compiler bugs [Sun et al.(2016)]

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 4 / 32

Miscompilation

Source

a = x ∗ y
i f (j == 1){

x = 1
b = x ∗ y

}
e l s e {

b = x ∗ y
}
r e t u r n b

Target

a = x ∗ y
i f (j == 1){

x = 1
b = a

}
e l s e {

b = a
}
r e t u r n b

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 5 / 32

Miscompilation [Leroy(2019)]

Bugs in the compiler can make it produce wrong executable code for a correct source program.

For low-assurance software:

miscompilation is negligible compared with bugs in the program itself

when happen, it is very hard to track down the cause

For high-assurance software:

e.g. aircraft, vehicle, cardiac device

source programs are often formally verified against its specification

miscompilation can invalidate the guarantees obtained by the inspection to source program

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 6 / 32

Semantic preservation [Leroy(2019)]

We’ve claimed that compilers should ”preserve semantics” or ”produce code that executes in
accordance with the semantics of the source program”.

What does this mean exactly?

Should source and compiled code do exactly the same thing?

What should be preserved?

The only thing that matters is the observable behavior.

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 7 / 32

Observable behavior

Source

i n t sum 10 ()
i n t r e s = 0
f o r (i n t i = 1 ; i<= 10 ; i ++){

r e s += i
}
r e t u r n r e s

Target

i n t sum 10 ()
r e t u r n 55

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 8 / 32

Observable behaviors [Leroy(2019)]

For realistic languages, observable behaviors include

termination

divergence

abnormal termination

I/O operations

However, program contains nondeterminism:

unspecified behavior e.g. evaluation order of foo(g(), k())

undefined behavior e.g. use of uninitialized variable

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 9 / 32

Refinement relation (backward simulation) [Leroy(2019)]

Definition (refinement)
Every possible behavior of the compiled program C is a possible behavior of the source program
S . However, C may have fewer behaviors than S .

Refinement suffices to show the preservation of properties established by source-level verification:
If the behavior of S satisfy a specification Spec, then the behavior of C satisfy Spec as well.

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 10 / 32

Refinement simplified [Lopes et al.(2021)][Leroy(2019)]

For simplicity, we assume determinism for source program and compiled program.

fsrc/ftgt are the source/target program, which can be regarded as functions

Isrc/Itgt are inputs to the source/target functions

O is the return value of functions

f (I ,O) means function f will output O given input I

Then we have the simplified refinement as follows:

∀Isrc , Itgt ,O.(Isrc = Itgt ∧ ftgt(Itgt ,O)) =⇒ fsrc (Isrc ,O)

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 11 / 32

Some attempts to approach compiler correctness

Translations validation:

avoid the need to inspect the complex logic inside compiler

look at one transformation each time

Compiler testing/fuzzing:

generate quality source programs for compiler

check target program

Correct by construction:

construct the whole compiler in proof assistant

corresponding proof is done in proof assistant

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 12 / 32

Translation validation

The goal is to check whether this source program and this target program have the same
observable behavior (same return value in our simplified case).

Source

f oo (x , y , j) :
a = x ∗ y
i f (j == 1){

x = 1
b = x ∗ y

}
e l s e {

b = x ∗ y
}
r e t u r n b

Target

f oo (x , y , j) :
a = x ∗ y
i f (j == 1){

x = 1
b = a

}
e l s e {

b = a
}
r e t u r n b

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 13 / 32

SAT/SMT solver

SAT stands for Boolean satisfiability problem. It is a problem of deciding the bool variable
assignment that satisfies a given proposition formula.

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x4 ∨ x5)

A SAT solver will output one of the following:

A variable assignment e.g. x1 = true, x2 = false, x3 = false, x4 = false, x5 = true

UNSAT (there is no assignment that can make the formula true)

Don’t know (due to intractability)

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 14 / 32

Satisfiability and Validity

SAT solver tries to find a variable assignment such that the given proposition formula is true.
For any valid proposition such as

x ∨ ¬x

The formula is true for any assignment. As a result, to prove its validity, we ask the SAT solver
to find an assignment that will make its negation true, which is

¬x ∧ x

If the SAT solver returns UNSAT, we have proven the formula.

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 15 / 32

SAT/SMT solver

SMT stands for Satisfiability module theory. Is is built based on SAT solver, with support for
more complex variable type other than boolean.

(x + 2y = 10) ∧ (x + y = 7)

Similarly SMT solver will output one of the following:

A variable assignment e.g. x = 4, y = 3

UNSAT

Don’t know

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 16 / 32

SMT for graph coloring problem

Fill in colors to nodes such that adjacent nodes have different colors.

(A = 1 ∨ A = 2 ∨ A = 3 ∨ A = 4)∧
(B = 1 ∨ B = 2 ∨ B = 3 ∨ B = 4)∧
(C = 1 ∨ C = 2 ∨ C = 3 ∨ C = 4)∧
(D = 1 ∨ D = 2 ∨ D = 3 ∨ D = 4)∧
¬(A = C) ∧ ¬(A = B) ∧ ¬(A = D)∧
¬(B = C) ∧ ¬(B = D) ∧ ¬(C = D)

Output: A = 1, B = 2, C = 3, D = 4

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 17 / 32

SMT encoding for source program

Source

f oo (x1 , y1 , j 1) :
a1 = x1 ∗ y1
i f (j 1 == 1){

x1 ‘ = 1
b1 = x1 ‘ ∗ y1

}
e l s e {

b1 = x1 ∗ y1
}
r e t u r n b1

SMT encoding for Source:

(a1 = x1 ∗ y1) ∧ (x1‘ = 1) ∧ (b1 = ITE(j1 == 1, x2 ∗ y1, x1 ∗ y1))

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 18 / 32

SMT encoding for target program

Target

f oo (x2 , y2 , j 2) :
a2 = x2 ∗ y2
i f (j 2 == 1){

x2 ‘ = 1
b2 = a2

}
e l s e {

b2 = a2
}
r e t u r n b2

SMT encoding for Target:

(a2 = x3 ∗ y3) ∧ (x2‘ = 1) ∧ (b2 = ITE(j2 == 1, a2, a2))

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 19 / 32

SMT check for refinement

Recall the definition of refinement

∀Isrc , Itgt ,O.(Isrc = Itgt ∧ ftgt(Itgt ,O)) =⇒ fsrc (Isrc ,O)

Its negation is
∃Isrc , Itgt ,O.(Isrc = Itgt ∧ ftgt(Itgt ,O)) ∧ ¬fsrc (Isrc ,O)

The final formula passed to SMT solver is

(a1 = x1 ∗ y1) ∧ (x1‘ = 1) ∧ (b1 = ITE(j1 == 1, x2 ∗ y1, x1 ∗ y1))∧
(a2 = x3 ∗ y3) ∧ (x2‘ = 1) ∧ (b2 = ITE(j2 == 1, a2, a2))∧
(x1 = x2) ∧ (y1 = y2) ∧ (j1 = j2)∧
¬(b1 = b2)

Output can be x1 = 2, y1 = 1, j1 = 1.

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 20 / 32

CBMC

If you still remember..........

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 21 / 32

CBMC

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 22 / 32

Compiler testing, fuzzing

A typical testing activity contains:

generate test cases as inputs (manually or automatically)

look at the outputs (testing oracle)

When it comes to compiler testing:

generate source programs

look at the target programs

But what properties to check?

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 23 / 32

Check for semantics preservation

For a transformation from a source program to a target program, it is correct when the
semantics is preserved. Possibility for cheating?

Come up with source programs for testing (fuzzing):

randomly generate complex source programs

modify previous successful source programs

reverse compiler execution for source programs that take certain path

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 24 / 32

Check for equivalence (Metamorphic testing)

I may not know what the output is, but I know what it should never be

Assume you have a sin function
sin(x) = sin(π − x)

The focus shifts from verifying to finding bugs. (less bug means more correct?)

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 25 / 32

Check for equivalence

When it comes to compiler testing:

same source programs for a compiler with near versions

unit source programs for ”peer” compilers from different vendors

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 26 / 32

Compcert

The first formally verified realistic compiler. (which took more than 5 years)

closer look to implementation logic

focus on code-gen transformation

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 27 / 32

Program as transition system

Execution of a program is a sequence of program state change.

α0 → α1 → α2 → · · · → αn

Consider an interpreter with small-step semantics. Program states only contain variable
assignment.

{x : 0} x=3−−→ {x : 3} x=x−1−−−−→ {x : 2} → . . .

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 28 / 32

Simulation

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 29 / 32

Simulation diagram

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 30 / 32

Coq proof assistant

It is a proof assistant, that’s all I know.

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 31 / 32

Conclusion

What is compiler correctness?

miscompilation

observable equivalence (semantics preservation)

Why it is important?

miscompilation is hard to track

source-level correctness needs to be preserved

How can we approach it?

translation validation

compiler testing

proof from construction

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 32 / 32

Xavier Leroy. 2019.
Lecture Notes on European Union Types.
https://xavierleroy.org/courses/EUTypes-2019/slides.pdf.

Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. 2021.
Alive2: bounded translation validation for LLVM. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementation
(Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY,
USA, 65–79.
https://doi.org/10.1145/3453483.3454030

Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. 2016.
Toward understanding compiler bugs in GCC and LLVM. In Proceedings of the 25th
International Symposium on Software Testing and Analysis (Saarbrücken, Germany)
(ISSTA 2016). Association for Computing Machinery, New York, NY, USA, 294–305.
https://doi.org/10.1145/2931037.2931074

Jingyu Qiu (UofR) Compiler correctness April 17, 2024 32 / 32

https://xavierleroy.org/courses/EUTypes-2019/slides.pdf
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/2931037.2931074

	Introduction

