CSC2/455 Software Analysis and
Improvement
Introduction

Sreepathi Pai
January 22, 2025

URCS

Classical Compiler Analysis
Program Analysis
Fundamental Issues

Administrivia

Classical Compiler Analysis

An example program

#include <stdio.h>

int main(void) {
int N = 10000;
int sum = 0;

for(int i = 1; i < N; i++) {
sum += i;

}

if (sum > 0) {

printf("%d: %x\n", sum, sum);
} else {

printf("sum is zero\n");

return O;

Compiled with gcc -00

main:

.L3:

.L2:

.L4:

.L5:

pushq
movq
subq
movl
movl
movl
Jmp
movl
addl
addl

movl
cmpl
j1
cmpl
jle
movl
movl
movl
leaq
movl
call
jmp

leaq
call

movl
leave
ret

%rbp

P
$10000, -4(%rbp)
$0, -12(%rbp)

$1, -8(%rbp)
.L2

-8(%rbp), %eax
%heax, -12(%rbp)
$1, -8(Jrbp)

-8(%rbp), %eax
-4(%rbp), %heax

.L3
$0, -12(%rbp)
.L4

-12(%rbp), %hedx
-12(%xbp) , %heax
‘heax, %esi
.LCO(%rip), %rdi
$0, %eax
printf@PLT

.L5

.LC1(%rip), %rdi
puts@PLT

$0, Y%eax

Compiled with gcc -01

main:
subq $8, JYrsp
movl $9999, Jeax
LL2:
movl $49995000, Y%ecx
movl $49995000, %edx

leaq .LCO(%rip), %rsi
movl $1, Yedi

movl $0, %eax

call __printf_chkOPLT
movl $0, ‘%eax

addq $8, %rsp

ret

The compiler:

e Eliminated the for loop
e Replaced it with the value computed
e Eliminated the else part of the if/then

e Because it would never execute

How did it do that?

How do you think the compiler did this?

Compilers today

e GNU Compiler Collection (GCC)
o LLVM
e Many proprietary compilers based on LLVM

Visual Studio

Proprietary compilers

e Intel icc
e NVIDIA/Portland Group

DSL Compilers today

DSL: Domain Specific Languages
OpenAl Triton

e Used to generate high performance matrix multiply for PyTorch
o |IREE

e Compiles ONNX ML models to high performance code
Microsoft CCL

e Generates high performance communication primitives for ML

Program Analysis

Analysis (and Verification)

How many times will this loop execute?

Will this condition always be true?

Is this value always a constant?

Are there bugs in a given piece code?

e NULL pointer dereferences?
e Data races (in concurrent code)?

Is this code correct (according to some specification)?

e Safety properties

e Informally, “something bad will never happen”
e Formally, a property that is always true

e Liveness properties

e Informally, “something good will eventually happen”
e Formally, a property that will eventually be true

e Other properties:

e All allocated memory is freed
e All open files are closed

Program Analysis Tools today

(Synopsys) Coverity

e GrammaTech CodeSonar
e Facebook Infer

e Frama-C

e PVS-Studio

e Microsoft SLAM

e Lots of others...

Fundamental Issues

What does this Python program do?

for i in range(n):
print ("boom!")

Strategy: Run (or Interpret) the program

e Running the program and observing what it does is a perfectly
reasonable way of analyzing a program

e Maybe run it in a simulator/VM or interpreter

e What problems do you anticipate with this strategy?

Some potential problems

e Too long

e Infinite loop (aka non-termination)
e Number of inputs may be infinite!

e Behaviour may depend on input

What does this program do?

def collatz(n): # n is a positive integer
while n > 1:
print(n)
if n % 2 == 0:
n=n// 2 # integer division
else:
n=3x%n+1

for i in range(n):
print ("boom!")

Analyzing this program

e This program will print only 1 boom!
e If the loop terminates

e Only if nis always reduced to 1
e |s it always? ($500 reward!)

e Can we determine if the loop terminates?

e For any n?
e For a fixed n?

Undecidability: The Halting Problem

e In general, an algorithm cannot determine if a program will
terminate on a given input
e What does this imply for program analysis?

e End of this course?

Program Analysis

e Program analysis needed for optimization (“making programs
faster”)
e Reducing number of operations
e Substituting cheaper operations
e Increasing parallelism of operations
e Also need for verification (“security”)
e Will this program crash for any input?
e Will this program leak memory? (malloc but no
corresponding free)
e Will this program read another user's files?
e Can a program be subverted to obtain root access?
e Computers everywhere, such questions far more important
now!

e 4.4B people have smartphones!

Mission Impossible?

e No general technique to analyze programs
e Many different approaches

o We will study many of these
e Basic
e Advanced

e Recent advances

Roadmap of the course: Part |

e Dataflow Analysis (DFA)
e Mostly used in compilers
e Automatic, fast, and approximate
e You'll construct the “mid-end” of a compiler for a subset of
the C language

e Introduces you to the engineering and theoretical aspects

e One specialized non-compiler tool: Oracle’s Soufflé

Some topics from part |

e How do we represent programs for analysis?
e Analyses

e |dentifying expressions that have the same value

e Detecting the last use of a variable

e Recognizing that an expression has already been computed
e Determining code that is always executed

e |dentifying unused code

e ctc.

Program Analysis: Part Il

e Abstract Interpretation (Al)
e Automatic, slower, and approximate
e Specialized tools: Facebook Infer, many others

e Model Checking

e Automatic, fast (but not as fast as DFA), and precise
e Can be intractable
e We'll look at CBMC, perhaps also Spin

e Symbolic Execution

e Automatic, fast, and precise
e Can be intractable
o We'll look at KLEE and maybe Angr

e Deductive Techniques

e Manual to semi-automated, as fast as you think, and precise
e Essentially involves writing proofs
e We'll look at (Microsoft) Dafny

Some things program analysis makes possible

Fast Javascript
e pioneered by Google's V8

Safe in-kernel execution of user-provided code

e Linux eBPF
e pioneered by Sun’s DTrace

Safe systems programming languages
e Rust

Airplanes in the sky
e Remember Boeing 737 MAX?

Where program analysis is being used

o Compilers
e Program security industry

e Conventional programs
e Programs on “blockchain”

Administrivia

e Instructor: Dr. Sreepathi Pai

e E-mail: sree@cs.rochester.edu
e Office: Wegmans Hall 3409
e Office Hours: Monday 15:30 to 16:30 (or by appointment)

e TAs:

e Jingyu Qiu
e Office Hours: Thursday 16:00 to 17:00, Wegmans 2215

Places

Class: Meliora 224
e M,W 1025-1140
Course Website

e https://cs.rochester.edu/~sree/courses/
csc-255-455/spring-2025/

Blackboard

e Announcements, Discussions

Gradescope

e Assignments, Homeworks, Grades, etc.

https://cs.rochester.edu/~sree/courses/csc-255-455/spring-2025/
https://cs.rochester.edu/~sree/courses/csc-255-455/spring-2025/

References

e Three textbooks
e Aho, Lam, Ullman, Sethi, Compilers: Principles, Techniques
and Tools
e Cooper and Torczon, Engineering a Compiler
e Rival and Yi, Introduction to Static Analysis: An Abstract
Interpretation Perspective, MIT Press, 2020
e This course requires a lot of reading!

e Books and materials have been placed on reserve
e Some online, some in Carlson Library

Homeworks: 15%
Assignments: 70% (5 to 6)
Exams: 15%

Graduate students should expect to read a lot more, and work

on harder problems.

There is no fixed grading curve. See course website for grade scale.

See course website for late submissions policy.

Academic Honesty

e Unless explicitly allowed, you may not show your code to
other students

e You may discuss, brainstorm, etc. with your fellow students
but all submitted work must be your own

o All help received must be acknowledged in writing when
submitting your assignments and homeworks

o All external code you use must be clearly marked as such in
your submission

e Use a comment and provide URL if appropriate

e If in doubt, ask the instructor

e It is a violation of course honesty to make your assignments
on GitHub (or similar sites) public

All violations of academic honesty will be dealt with strictly as per
UR'’s Academic Honesty Policy.

https://www.rochester.edu/college/honesty/

Code Generation Tools

e Tools like CoPilot, ChatGPT are best not used
e unfortunately these tools are hard to avoid

e Unless otherwise stated, you are free to use "Al" tools to do
your assignments (e.g. ChatGPT, Co-pilot, etc.) provided you
follow the rules below. Not following the rules below will be
treated as a honesty code violation.

e Please put a comment at the top in each file that includes
Al-generated material (include auto-completions) indicating
what system was used, like " # Al: ChatGPT"

e If this is a system like ChatGPT, include the full transcript as a
comment at the end of the source file.

e |f this was a system like Co-pilot which and you used prompts,
leave the prompts in the source code.

Instructor/TA expectations about generated code

o Note that the TAs and | will only help you debug Al-generated
code at our discretion.

e Also note that compiler engineering requires good
programming skills, and you should use this class to develop

them

Course Goals

Write your own compilers

Modify existing compilers

Read about new analyses (in research papers)

Create new analyses

Use analysis tools and frameworks

Where are they now?

e Class alumni have gone on to careers in compilers

e Industry
e NVIDIA
e Cray/HPE
e Texas Instruments
e Qualcomm
e Microsoft
e and others to work on compilers.

e Graduate school

e UIUC
e Utah
Cornell

and others.

	Classical Compiler Analysis
	Program Analysis
	Fundamental Issues
	Administrivia

