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Characterizing loop dependences



Why characterize dependences?

e The definition of dependence that we have used so far:

e Two statements have a dependence if:
e Both access same location (memory or register)
e And one of the accesses is a write

e This is not sufficient to reason about dependences in loops

e We will extend this definition of dependences to loop
dependence
e Study additional characteristics of dependences



Already encountered characteristics of dependences

e True dependence
e 5165,
e S; writes, S, reads
e Anti-dependence
e 50715,
e 5; reads, S, writes
e Output dependence
e 50°5,
e Both S; and S, write



Loop-independent dependence

e What are the dependences in the loop body below?

e Can you change the order of the statements in the loop body?

DO I =1, 10
AC(I) = A(T) +B
C(I) = A(D) + D
ENDDO

e Can you change the (execution) order of loop iterations?

Note: FORTRAN uses parentheses in array references: e.g., A(I)



Loop-independent dependences visualized

AB)=A(B)+B

A0)=A0)+B A()=A()+B AQ)=AQ2)+B

NOTE: Only dependences from first four iterations visualized.



Loop-carried dependences

e What are the dependences in the loop body below?

e Can you change the order of the statements in the loop body?

DO I =1, 10
AT + 1) = A(I) + B
C(I) = A(I) + D

ENDDO

e Can you change the (execution) order of loop iterations?



Loop-carried dependences visualized

AO+1)=A®0) +B
A+ 1)=A(l)+B
AQ+ 1) =AQ)+B

NOTE: Only dependences from first three iterations visualized.

C0)=A0)+D




Dependence Level for Loop-Carried Dependences

DO I =1, 10
pDoJ=1, 2
AT +1, J) = AT, J) +1
ENDDO
ENDDO

e Can you change the order of inner loop?

e Can you change the order of the outer loop?



Dependences Visualized

A0+1,0)=A(0,0)+ 1 AO+1,1)=A0, 1)+ 1
A2+1,00=A2,0+1 A+ 1, D)=A2, DH+1

NOTE: Only dependences from first three iterations visualized.




Loop Dependences

e Loop-independent dependence
e In same iteration, independent of loops
e Loop-carried dependence
e Across different iterations of atleast one loop
e Dependence Level of a Loop-carried Dependence

e The nesting level k of loop that carries the dependence
e S516kS



Iteration Spaces

e S has four instances (/,J): (1,1),(1,2),(2,1),(2,2)
e Each of these values represents an iteration vector

e Particular values of loop indices from outermost loop to
innermost loop



Iteration Space Example

DO J =1, 10
DOI =1, 10
A(I+1, J) = A(T, J) + X
ENDDO

ENDDO



Iteration Space Figure



Iteration Vector Ordering

For two vectors 7 and j, each containing n elements, i < j is

defined as:

def lessthan(i, j, n):
if n == 1:
return i[0] < j[O]

# test prefix for elementwise-equality
if i[0:n-1] == j[0:n-1]:

return i[n-1] < j[n-1]
else:

return lessthan(i, j, n-1)

Can similarly define other order relations.



Loop dependence

Statement S1 (source) depends on statement S2 (sink) if:

There exist iteration vectors / and j such that /i < j or i =

e There is a path from S1 to S2 in the loop

S1 accesses memory M in iteration i

S2 accesses memory M in iteration j

and one of the accesses is a write



Distance Vectors

d(i,j)k = jk — ik

e Where i,j,d(i,j) are n-element vectors

e ;. indicates k-th element of /

Example distance vector: (0,1)



Direction Vectors

D(’?J)k =

o "< ifd(i,j)x >0
o "=",if d(i,j)k =0
o ">" if d(i,j)xk <0

Example direction vector for (0,1): (=, <)



Information we need to track

For every pair of memory references:

e |teration Vectors i and j which have a dependence, or
e Unique Distance Vectors d(i, ), or

e Unique Direction Vectors D(i, )



e Which of these indicates a loop-independent dependence?
° (==)
* (=<)
e Of the loop-carried dependence in example above, what level
is the loop-carried dependence?



Theorems

WARNING: Informal language

e Direction Vector Transform (Theorem 2.3 in AK)

e If a transformation reorders loop iterations, and preserves the

1

leftmost non-"=" component as " <", all dependences are

preserved.
e Theorem 2.4 in AK

e If a level-k dependence exists, and a transformation reorders
loop iterations while not reordering the level-k loop

e And does not move loops inside k outside the loop and vice
versa

e |t preserves all level-k dependences.

e lIteration Reordering (Theorem 2.6 in AK)

e |terations of a level k loop can be reordered if there is no level
k dependence.



Identifying Loop Dependences



Generalizing Loop Indices

DO I_1 = ...
DO I_2= ...
DO IN = ...
A(f1, £2, £3, ..., fM) = ...
. = A(gl, g2, g3, ..., g
ENDDO
ENDDO
ENDDO

where A is M-dimensional array, and fX and gX are index
functions of the form

o £X(I1, 12, ..., IN)
o gX(I1,12, ..., IN)
e l<=X<=M



Dependence using lteration Vectors

Let o and 3 be iteration vectors:

e X = (il, i2, i3, ceey /N)
A B !
[ /8 = (I17 /27 I3, ceey IN)
Then a dependence exists if:

e (vectors) a < f8
o X(a)=gX(p) forl<=X<=M



DO J =1, 10
DOI =1, 10
A(I+1, J) = A(T, J) +X
ENDDO

ENDDO

o f1(J,1)=1+41,f2(J,1)=J
o gl(J,)=1,g2(J,1)=J
e For a=(0,0) (i.e. J=0,/=0)and g =(0,1) (i.e.
J=0,1=1):
o fl(a) = gl(f),ie. 1=1
o f2(a) = g2(p),ie. 0=0
e Many other values of v and 3 also satisfy these equations.



Dependence Testing

Do iteration vectors «v and 3 exist such that:

e (vectors) a < f3
o X(a)=gX(p) forl<=X<=M

How can we find « and (3 if they exist?



Restrictions on Index functions

e X and gX must be decidable
e fX and gX must be "analyzable”
e to avoid brute force search
e X and gX must be a linear functions of loop indices:
e ie. for ;X(i1, b, i3y...sin)
o X =ajh+a+..+an,+e
e ¢ is optional loop invariant calculation



Dependence Testing on Restricted Index Functions

e Given that £X and gX are linear functions of loop indices

e Do iteration vectors « and (3 exist such that:

o (vectors) a < 3
o X(a)=gX(p) forl<=X<=M

How can we find « and § if they exist?

What is this problem better known as?



Dependence Testing

e Integer Linear Programming is NP-complete
e Lots of heuristics invented
e Profitable to know if no solution exists since it implies no
dependence!

e See Chapter 3 of AK (we will not cover this in this course,
take CSC 2/455)



Current Loop Optimizations



Current Focus in Compilers

e GCC begin supporting vectorization for C around 4.9

e —ftree-vectorize or -03
e Can get it to tell you why vectorization failed.

e LLVM also supports vectorization
e See "Polly” at http://polly.llvm.org


http://polly.llvm.org

More focus on optimization by loop transformation

e More emphasis on Scheduling

e Which iteration of loop executes where
e Classical loop transformations

e Loop tiling

e Loop fusion

e etc.

e Unifying theory and infrastructure

e polyhedral.info
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