
CSC2/458 Parallel and Distributed Systems

PPMI: Basic Building Blocks

Sreepathi Pai

February 13, 2018

URCS



Outline

Multiprocessor Machines

Archetypes of Work Distribution

Multiprocessing

Multithreading and POSIX Threads

Non-blocking I/O or ‘Asynchronous’ Execution



Outline

Multiprocessor Machines

Archetypes of Work Distribution

Multiprocessing

Multithreading and POSIX Threads

Non-blocking I/O or ‘Asynchronous’ Execution



Very Simplified Programmer’s View of Multicore

core

PC

core

PC

core

PC

core

PC

core

PC

• Multiple program counters (PC)

• MIMD machine

• To what do we set these PCs?

• Can the hardware do this automatically for us?



Automatic Parallelization to the Rescue?

for(i = 0; i < N; i++) {
for(j = 0; j < i; j++) {

// something(i, j)
}

}

• Assume a stream of instructions from a single-threaded

program

• How do we split this stream into pieces?



Thread-Level Parallelism

• Break stream into long continuous streams of instructions

• Much bigger than issue window on superscalars

• 8 instructions vs hundreds

• Streams are largely independent

• Best performance on current hardware

• “Thread-Level Parallelism”

• ILP

• DLP

• MLP



Parallelization Issues

• Assume we have a parallel algorithm

• Work Distribution

• How to split up work to be performed among threads?

• Communication

• How to send and receive data between threads?

• Synchronization

• How to coordinate different threads?

• A form of communication



Outline

Multiprocessor Machines

Archetypes of Work Distribution

Multiprocessing

Multithreading and POSIX Threads

Non-blocking I/O or ‘Asynchronous’ Execution



Types of Parallel Programs (Simplified)

Let’s assume all parallel programs consist of “atomic” tasks.

• All tasks identical, all perform same amount of work

• Count words per page (many pages)

• Matrix Multiply, 2D-convolution, most “regular” programs

• All tasks identical, but perform different amounts of work

• Count words per chapter (many chapters)

• Graph analytics, most “irregular” programs

• Different tasks

• Pipelines

• Servers (Tasks: Receive Request, Process Request, Respond to

Request)



Scheme 1: One task per thread, same work

Count words per page of a book.



Work assigned once to threads (Static)



How many threads?

• As many as tasks

• As many as cores

• Less than cores

• More than cores



Hardware and OS Limitations

• As many as tasks

• Too many, OS scheduler limitations

• As many as cores

• Reasonable default

• Less than cores

• If hardware bottleneck is saturated

• More than cores

• May help to cope with lack of ILP



Scheme 2: Multiple tasks per thread, differing work

Count words per chapter of a book.



Static Work Assignment

Assign chapters evenly.



Static Work Assignment

Chapters are of different lengths leading to load imbalance



Assigning chapters by size of chapters

• Not always possible

• May not know size of all chapters

• Bin-packing problem

• NP-hard



Dynamic (Greedy) Balancing

• Create a set of worker threads (thread pool)

• Place work (i.e. chapters) into a parallel worklist

• Each worker thread pulls work off the worklist

• When it finishes a chapter, it pulls more work off the worklist



Dynamic Balancing

Parallel Worklist



Generalized Parallel Programs

• Threads can create additional work (“tasks”)

• Tasks may be dependent on each other

• Form a dependence graph

• Same ideas as thread pool

• Except only “ready” tasks are pulled off worklist

• As tasks finish, their dependents are marked ready

• May have thread-specific worklists

• To prevent contention on main worklist



Outline

Multiprocessor Machines

Archetypes of Work Distribution

Multiprocessing

Multithreading and POSIX Threads

Non-blocking I/O or ‘Asynchronous’ Execution



Multiprocessing

• Simplest way to take advantage of multiple cores

• Run multiple processes

• fork and wait

• Traditional way in Unix

• “Processes are cheap”

• Not cheap in Windows

• Nothing-shared model

• Child inherits some parent state

• Only viable model available in some programming languages

• Python

• Shared nothing: Communication between processes?



Communication between processes

• Unix Interprocess Communication (IPC)

• Filesystem

• Pipes (anonymous and named)

• Unix sockets

• Semaphores

• SysV Shared Memory



Outline

Multiprocessor Machines

Archetypes of Work Distribution

Multiprocessing

Multithreading and POSIX Threads

Non-blocking I/O or ‘Asynchronous’ Execution



Multithreading

• One process

• Process creates threads (“lightweight processes”)

• How is a thread different from a process? [What minimum

state does a thread require?]

• Everything shared model

• Communication

• Read and write to memory

• Relies on programmers to think carefully about access to

shared data

• Tricky



Multithreading Programming Models

Roughly in (decreasing) order of power and complexity:

• POSIX threads (pthreads)

• C++11 threads may be simpler than this

• Thread Building Blocks from Intel

• Cilk

• OpenMP



POSIX Threads on Linux

• Processes == Threads for scheduler in Linux

• 1:1 threading model

• See OS textbook

• pthreads provided as a library

• gcc test.c -lpthread

• OS scheduler can affect performance significantly

• Especially with user-level threads



Multithreading Components

• Thread Management

• Creation, death, waiting, etc.

• Communication

• Shared variables (ordinary variables)

• Condition Variables

• Synchronization

• Mutexes (Mutual Exclusion)

• Barriers

• (Hardware) Read-Modify-Writes or “Atomics”



Outline

Multiprocessor Machines

Archetypes of Work Distribution

Multiprocessing

Multithreading and POSIX Threads

Non-blocking I/O or ‘Asynchronous’ Execution



CPU and I/O devices

• CPU compute

• I/O devices perform I/O

• What should the CPU do when it wants to do I/O?



Parallelism

• I/O devices can usually operate in parallel with CPU

• Read/write memory with DMA, for example

• I/O devices can inform CPU when they complete work

• (Hardware) Interrupts

• How do we take advantage of this parallelism?

• Even with a single-core CPU?

• Hint: OS behaviour on I/O operations?



Non-blocking I/O within a program

• Default I/O programming model: block until request is

satisfied

• Non-blocking I/O model: don’t block

• also called ”Asynchronous I/O”

• also called ”Overlapped I/O”

• Multiple I/O requests can be outstanding at the same time

• How to handle completion?

• How to handle data lifetimes?



General Non-blocking I/O Programming Style

• Operations don’t block

• Only succeed when guaranteed not to block

• Or put request in a (logical) queue to be handled later

• Operation completion can be detected by:

• Polling (e.g. select)

• Notification (e.g. callbacks)



Programming Model Constructs for Asynchronous Program-

ming

• Coroutines

• Futures/Promises


	Multiprocessor Machines
	Archetypes of Work Distribution
	Multiprocessing
	Multithreading and POSIX Threads
	Non-blocking I/O or `Asynchronous' Execution

