
CSC2/458 Parallel and Distributed Systems

Parallel Data Structures - I

Sreepathi Pai

January 18, 2018

URCS



Outline

Concurrent Objects

Correctness/Safety



Outline

Concurrent Objects

Correctness/Safety



Concurrent Objects/Data Structures

• Like normal objects, except that methods may be called
concurrently

• Implementation is internal

• Interface (i.e. methods) is public

• Key concerns:

• Correctness (Safety)

• Progress (Liveness)

• Concurrency (Performance)



Per-instance locks

• Each object instance has an associated lock

• Each method acquires this object lock on entry

• Each method releases this object lock on exit

• Multiple exits must be handled carefully!

• End result: Only one method in the object can be running at

a time



Monitors

• Per-method locks are also called “Monitors”

• Ensure that concurrent operations always execute in some
serial order

• The order in which they obtained locks

class queue:
lock qlock

def enq(item):
qlock.acquire()
...
qlock.release()

def deq(item):
qlock.acquire()
...
qlock.release()



Issues with Monitors

• Lack of concurrency

• Amdahl’s law!

• What if no locks were used in implementation?

• E.g., a lock is a concurrent object which may use just ordinary

reads/writes or atomic read-modify-writes



Outline

Concurrent Objects

Correctness/Safety



The tale of the fast concurrent queue

TO: T1:
q1.enq(x) q1.enq(y)
q1.deq() q1.deq()

• Both q1.deq() in both threads returned empty!

• What kind of implementation allows this?

• What behaviour are we expecting?



A possible implementation

• All deq operations are prioritized over enq operations

• Two separate internal queues for deq and enq

• All commands in deq processed before enq

• Does this implementation resemble a concurrent data

structure you already use?



System Memory as a Concurrent Data Structure

• RAM is a concurrent data structure

• Supports two methods read and write

• Many CPUs have separate queues for reads and writes

• Many memory systems may also reorder reads (and/or) writes

• How did we reason about ordering in such systems?



Sequential Consistency for Concurrent Objects

• If, operations on a concurrent object

• Appear to happen in some serial, interleaved order across

program threads

• While respecting program order within a thread

• Then that object is sequentially consistent



The Sequentially Consistent Queue

Assume q1 is a sequentially consistent queue

TO: T1:
q1.enq(x) q1.enq(y)
q1.deq() q1.deq()

• What can q1.deq() in T0 return?

• What can q1.deq() in T1 return?

• Can either return empty?



Implementing a Sequentially Consistent Queue

enq(x)

deq deq

enq(y)

T0 T1

q1



How do two sequentially consistent queues interact?

TO: T1:
q1.enq(x) q2.enq(y)
q2.enq(x) q1.enq(y)
q1.deq() => y q2.deq() => x

• Is the value of q1.deq() sequentially consistent?

• Is the value of q2.deq() sequentially consistent?

• Can you find a single total order for operations on q1 and q2

that:

• follows program order in each thread,

• in an interleaving of operations across each thread in some

serial order?



Composing Two Sequentially Consistent Queues?

enq(x)

deq

enq(y)

T0 T1

q1

enq(x)

deq

enq(y)

T0 T1

q2



Sequential Consistency Does Not Compose

• A system built out of sequentially consistent components may

itself not be sequentially consistent!

• Does this matter for RAM?

• How do we build a sequentially consistent system for multiple

queues?



Linearizability

• Object has some notion of sequential semantics

• enq places item in queue

• deq removes item from non-empty queue

• For the equivalent concurrent object:

• Construct a sequential history of operations

• If this history is consistent with sequential semantics, the

object is linearizable

• To build linearizable objects

• Each operation must appear to complete ”instantaneously” ...

• ... and must do so between its call and return

• (note: calls and returns appear as two separate items in the

history)



Translation

• Avoid partial updates

• Maintain atomicity of all shared data

• Including multiple variables

• Identify ”linearization” points

• These are points where operation occurs ”instantaneously”

• (where operation’s effects are made visible to other threads)

• Order concurrent operations in the history by order of

execution of their linearization points



Linearizability is composable

• If operations on two objects are linearizable individually,

• then the operations on the two objects in a program are also

linearizable



Linearizability and multiple objects

Assume two bank accounts – A and B – each containing 500 units

of money

TO T1
A.withdraw(100) sum = B.balance()
B.deposit(100) sum += A.balance()

• withdraw, deposit and balance are all atomic

• This sequence is linearizable

• Can sum ever be 900?



Yes

TO T1
A.withdraw(100)

sum = B.balance()
sum += A.balance()

B.deposit(100)



Serializability

• Unit of execution is not operations, but a transaction

• If transactions appear to execute one at time in some total

order, then they serialize

• Below, sum will always be 1000, regardless of order of

execution of transactions, assuming A and B started with 500

TO T1
transaction {

A.withdraw(100)
B.deposit(100)

}
transaction {

sum = B.balance()
sum += A.balance()

}



Implementing Transactions

• Grab locks for A and B at beginning of transaction

• Release locks for A and B at end of transaction

• What is the problem here?

TO T1
transaction {

A.withdraw(100)
B.deposit(100)

}
transaction {

sum = B.balance()
sum += A.balance()

}



Two-phase locking and transaction retrying

• Acquiring locks may cause deadlocks

• Two-phase locking

• Only acquire locks (”expansion”)

• Only release locks (”contraction”)

• If deadlock detected (e.g. dependence graph between
transactions)

• Release all locks

• Retry transaction



Transaction Ordering

This paragraph describes, generally, how we post transactions to accounts. Please note that this process may

change from time to time, without prior notice to you. Our order of posting depends on a number of factors,

including when a transaction occurs, whether it has already been approved by us or has become final, the order in

which it presented, the amount, system availability, potential risk of loss to the Bank, and the type of transaction

in question, among other variables. Usually, deposits are posted before debits, and checks are posted in order of

amount, from low to high. There are several exceptions to this posting order, however. We also generally process

previously authorized transactions (e.g., checks cashed at the Bank), wires, transfers, Bank fees and ACH debits

before we pay your checks. We always reserve the right to post transactions that are payable to us first, and we

may post any transaction earlier or later in the process than indicated. As such, if you want to avoid an overdraft

or the possibility of a rejected transaction, you should take steps to ensure that your account has sufficient funds to

cover each of your transactions and our fees.


	Concurrent Objects
	Correctness/Safety

