
CSC2/458 Parallel and Distributed Systems

Paxos

Sreepathi Pai

April 19, 2018

URCS



Outline

State Machine Replication (SMR)

Paxos



Outline

State Machine Replication (SMR)

Paxos



Tolerating faults using SMR

• Use replicas

• Each replica runs a deterministic algorithm

• If all replicas:

• starts in the same initial state

• execute messages in the same order

• then a majority vote among them will allow fault tolerance

• t faults can be tolerated by 2t + 1 machines



Key problem

How can replicas always agree on the same order in the presence of

faults?

Hint: this is the consensus problem



FLP

They can’t: FLP theorem tells us there is no deterministic

consensus algorithm that works even in the face of one failure.



What does “works” mean?

Recall: To prove FLP, we showed that all algorithms could always

get trapped in states where they made no decision.



Liveness is impossible, what about safety?

Can we build a distributed system where if replicas agree, they will

all agree on the same order? Even in the presence of failures?



Safety/Correctness properties

From Lamport (2001):

• Only a value that has been proposed may be chosen

• Only a single value is chosen

• A process never learns that a value has been chosen unless it

actually has been



Assumptions

• Asynchronous communication

• Non-Byzantine Fail-stop failures

• However, machines have stable memory that can tolerate

failures (why?)

• Byzantine failures: arbitrary failures

• Messages can take:

• delayed,

• duplicated

• lost

• but NOT corrupted



Outline

State Machine Replication (SMR)

Paxos



Setup

• Three classes of “agents”

• Proposers: proposes a value v

• Acceptors: accepts a value v that is proposed

• Learners: learns that a value v was accepted

• These agents may be mapped to the same process, so a

process could play all three roles



Accepting

• As an acceptor, you may accept a value that is not accepted
(i.e. not chosen) by the majority.

• Multiple proposers, different values

• implies multiple rounds of acceptance

• But you must accept a value

• Single proposer, one value

• i.e., you don’t know if there are other proposers



Requirement 1

As acceptor, accept the first proposal you receive, [but also accept

multiple proposals, if they have the same value you accepted. ]



Invariants

Let proposals have a unique number n in the system n : v .

Ensure that if a proposal with value v is chosen (i.e. accepted by

majority), then every higher-numbered proposal that is chosen has

the value v

You can ensure this by:

• Acceptors only accept higher-numbered proposals if these

have the chosen value v

• Proposers only propose v in their higher-numbered proposals

if v was chosen

• How do we ensure this (esp. if we’re a proposer)?



Invariants

The two invariants hold, if when proposal n : v is issued:

• no majority set of acceptors has accepted a proposal < n

• otherwise, we couldn’t propose n : v unless v was chosen

• v has been chosen by a set of acceptors with a proposal < n



The Proposer’s Algorithm

• Proposer sends a “prepare” request, using a value n

• An acceptor who responds to this message:

• promises that it will not accept a proposal < n

• if it has already accepted a proposal < n, it sends the value v

that has been accepted

• If a majority of acceptors respond, a proposal is made
(“accept”):

• n : v where v is the value of the highest-numbered proposal

accepted so far

• or is the value of the proposer itself



The Acceptor’s algorithm

• An acceptor responds to a prepare if its n is greater than any

n′ it has seen so far

• An acceptor accepts a proposal numbered n iff:

• it has not responded to a prepare request > n

• It can ignore:

• prepare requests with n′ where n′ < n and it has already

responded to prepare n

• duplicate prepare requests



Learners

• Learners learn chosen value by (e.g.) broadcast

• But could also use a single distinguished learner that

communicates with other learners



Stable storage

• An acceptor must remember n, below which it will not accept

• save this before responding to prepare

• An acceptor must remember n′ : v , which it has accepted

• save this before accepting

• A proposer must remember all proposal numbers it has used
in the past

• and must not reuse them

• save this before proposing



Progress

• Proposal p prepares n1 and succeeds

• Proposal q prepares n2 > n1 and also succeeds

• Causing accepts of p to fail, since majority will not accept

n1 < n2

• Proposal p restarts with n3 > n2

• Causing accepts of q to fail, since majority will not accept

n2 < n3

• ad infinitum



Distinguished Proposers

• To ensure progress, elect a distinguished proposer

• Must have access to a majority of acceptors

• eventually will have a proposal accepted

• ”If enough of the system (proposers, acceptors,
communication network) is working properly”, liveness can
therefore be achieved...

• This is not guaranteed

• But safety is guaranteed.



Acknowledgments

Lecture largely follows the treatment in Lamport (2001), ”Paxos

made simple”

https://lamport.azurewebsites.net/pubs/paxos-simple.pdf
https://lamport.azurewebsites.net/pubs/paxos-simple.pdf

	State Machine Replication (SMR)
	Paxos

