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ML Machines

� Multicore CPUs

� GPUs

� Accelerators

� TPU

� Groq

� Amazon Inferentia



Abstract Problem

� Map operators to compute

units over time

� Ensure data flows respect

data dependences

� Obtain high throughput
(work / time)

� or minimum latency per

work (less important)
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Concrete Problem

� Schedule operators and data flows on to machine
(“macroscopic view”)

� Needs timing for each operator and data flow

� Timing is “easy” when inputs and outputs have fixed,

unchanging sizes (i.e., not LLMs)

� Write a high performance operator implementation
(“microscopic view”)

� when not provided by hardware

� preferably tunable

� Tune schedule and operators until you reach peak throughput



Outline

Running ML programs

Execution on a Bespoke Accelerator

Execution on a General Purpose Processor

Microscopic View

Recommended Readings



Each operator type is its own functional unit

ReLU Conv Pixel
Shuffle

Controlx output

� To simplify, we can make each type of operator its own
functional unit

� With dedicated input and output buffers

� Other alternative:

� Build exact operator needed for ML program (e.g., 5x5

convolution over 128x128 grayscale images)

� Mapping is simplified, but wastes space



Just one convolution?

self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))

� Different number of in channels vs out channels (first two

arguments)

� Different convolution kernel sizes (5x5, 3x3)

� Different strides, padding

� Could have implemented this as different convolution units

� ReLU also operates on different size inputs



Serial Timeline
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Pipeline Parallelism

� We can implement pipeline parallelism

� Different inputs are active at each unit

� Requires re-design of accelerator

� Need more buffers

� Need separate convolutional units

� Note: simple design has pipeline stages of different durations



With Pipeline Parallelism
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� Increased Parallelism demands increased resources

� Memory

� Compute

� This is true even on general purpose machines!

� generally increased memory usage



Data Parallelism

� Process multiple inputs at the same time

� on independent hardware



Simple DP
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Pipelined DP
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A General Purpose Architecture

RAM

Compute

� Compute may contain multiple cores

� Memory might be NUMA



Additional Complications

� Primarily, one size doesn’t fit all

� Fixed hardware, shared resources

� Utilization varies across operators

� Data path is shared among operators

� All operators read and write from the same memory

� Memory is limited

� All operators are implemented in software



Dynamic Scheduling

� Classic design: Scheduler +

Worker threads

� Scheduler divides operator

work into worker-size chunks

and places it in a work

queue/pool

� Worker threads grab chunks
from queue

� Most general method, can

be specialized

� Independent operators can
execute in parallel

� if there are resources

� Dependent operators wait

WorkerThread WorkerThread

Global Work Queue

Scheduler

matmul
conv
relu

Operator Queue



Static Scheduling

� For most ML programs, the sizes of inputs and outputs are

fixed

� Implies that timing of each operator can also be predicted in
advance

� Provided machine is fixed

� Timing information + Data flow can be used to generate a

schedule offline

� Haven’t seen this style of execution on CPUs/GPUs (yet?)

� only in specialized contexts like Groq’s chips where the

hardware requires it



Macroscopic Optimizations

� Fusion

� Combine two operators together

� Partitioning

� Separate the graph into parts, with each part executing on a

particular device

� Parallelism optimizations

� Data Parallelism (run multiple copies of the graph on different

user inputs)

� Pipeline Parallelism (run multiple operators on different user

inputs)

� Tensor Parallelism (run graphs on multiple devices with tensors

split across devices)

� other forms as well ...
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A Software Operator

� An operator kernel must be written for each general purpose
device

� CPUs, GPUs, etc.

� Usually multiple variants of a kernel exist

� for different sizes, e.g.

� But all must achieve high operation throughput

� Implies keeping the pipeline full



Balancing Operation Throughput

� A machine can perform 2 32-bit FMA/cycle

� Each FMA takes 4 cycles

� By Little’s law, n = Rt (with R = 2 and t = 4), there are 8

FMAs in flight

� Each FMA requires 3 operands

� each operand in a register

� So 24 registers are needed for 8 FMAs

� Consequently, there are also 24 loads in flight

� We are consuming 12 bytes/cycle (per 32-bit FMA)

� and if we’re reading from memory, this is the bandwidth

required.



Another example

� A machine can transfer 64-bits / cycle from RAM

� assume each load is also 64-bits, so 1 load/cycle

� The latency of a load from RAM is 100 cycles

� How many loads are required to saturate bandwidth?

� n = Rt, with R = 1 and t = 100, so 100 loads in flight

� Some alternatives:

� transfer data in blocks (cache line size = 64 bytes, about 8

loads)

� rely on a prefetcher



Latency Hiding through Parallelism

� Little’s Law tells us n parallel operations are needed to keep
the pipeline (or bandwidth) full

� i.e. “hide” the latency of the operation

� This n dictates how many other operations need to be in
flight

� memory for compute

� compute for memory

� If not enough operations are available (lack of parallelism) or
there are not enough resources (i.e., structural hazards, e.g.,
registers, queue sizes, bandwidth)

� then some of the latency will be exposed and throughput will

drop



The Roofline Model

� The Roofline model applies to regular numerical codes

� be skeptical of applications beyond regular numerical code

� Uses arithmetic intensity I , denoted in FLOPs/byte

� Floating point operations per byte β

� (do not confuse with FLOP/S which is Floating point

operations per second)

� P = min(Tpeak, β × I )

� Tpeak is peak FLOPs/second of the machine

� β is bandwidth in bytes/second

� Informally: if you performed 1 FLOP per byte of RAM read,
you cannot perform more FLOP/S than β

� Generally, Tpeak is multiple teraflops/s, β is usually low

terabytes/s

� implies “reuse” of data required to reach high teraflop/s



Roofline graph

Giu.natale, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

https://creativecommons.org/licenses/by-sa/4.0
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Optional Further Readings

� Roofline: an insightful visual performance model for multicore

architectures

� All about Rooflines: Part 1 of How to Scale your Model

� Applying the Roofline Model

https://dl.acm.org/doi/10.1145/1498765.1498785
https://dl.acm.org/doi/10.1145/1498765.1498785
https://jax-ml.github.io/scaling-book/roofline/
https://spiral.ece.cmu.edu/pub-spiral/pubfile/ispass-2013_177.pdf
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