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Running ML programs



ML Machines

e Multicore CPUs
e GPUs

e Accelerators

e TPU
e Groq
e Amazon Inferentia



Abstract Problem

e Map operators to compute

units over time

e Ensure data flows respect
data dependences
e Obtain high throughput
(work / time)
e or minimum latency per
work (less important)
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Concrete Problem

e Schedule operators and data flows on to machine
(“macroscopic view" )
e Needs timing for each operator and data flow
e Timing is “easy” when inputs and outputs have fixed,
unchanging sizes (i.e., not LLMs)
e Write a high performance operator implementation
(“microscopic view")
e when not provided by hardware
e preferably tunable

e Tune schedule and operators until you reach peak throughput



Execution on a Bespoke Accelerator



Each operator type is its own functional unit

X output

e To simplify, we can make each type of operator its own
functional unit

e With dedicated input and output buffers
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e Other alternative:
e Build exact operator needed for ML program (e.g., 5x5
convolution over 128x128 grayscale images)
e Mapping is simplified, but wastes space



Just one convolution?

self.convl
self.conv2
self.conv3
self.conv4d

nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
nn.Conv2d (32, upscale_factor *x 2, (3, 3), (1, 1), (1,

e Different number of in channels vs out channels (first two
arguments)

e Different convolution kernel sizes (5x5, 3x3)
o Different strides, padding
e Could have implemented this as different convolution units

e Rel U also operates on different size inputs



Serial Timeline
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Pipeline Parallelism

e We can implement pipeline parallelism
e Different inputs are active at each unit
e Requires re-design of accelerator

e Need more buffers
e Need separate convolutional units
e Note: simple design has pipeline stages of different durations



With Pipeline Parallelism
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e |ncreased Parallelism demands increased resources

e Memory
e Compute

e This is true even on general purpose machines!

e generally increased memory usage



Data Parallelism

e Process multiple inputs at the same time

e on independent hardware
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Pipelined DP
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Execution on a General Purpose Processor



A General Purpose Architecture

Compute

e Compute may contain multiple cores

e Memory might be NUMA



Additional Complications

Primarily, one size doesn't fit all

e Fixed hardware, shared resources

Utilization varies across operators

Data path is shared among operators

e All operators read and write from the same memory

Memory is limited

All operators are implemented in software



Dynamic Scheduling

e Classic design: Scheduler +
Worker threads

WorkerThread WorkerThread

e Scheduler divides operator
work into worker-size chunks

and places it in a work

queue/pool |
Global Work Queue

e Worker threads grab chunks

from queue @

e Most general method, can

be specialized matmul
conv

e Independent operators can et
execute in parallel

e if there are resources
Operator Queue

e Dependent operators wait



Static Scheduling

e For most ML programs, the sizes of inputs and outputs are
fixed

e Implies that timing of each operator can also be predicted in
advance

e Provided machine is fixed
e Timing information + Data flow can be used to generate a
schedule offline

e Haven't seen this style of execution on CPUs/GPUs (yet?)

e only in specialized contexts like Groq's chips where the
hardware requires it



Macroscopic Optimizations

e Fusion
e Combine two operators together
e Partitioning
e Separate the graph into parts, with each part executing on a
particular device
e Parallelism optimizations
e Data Parallelism (run multiple copies of the graph on different
user inputs)
e Pipeline Parallelism (run multiple operators on different user
inputs)
e Tensor Parallelism (run graphs on multiple devices with tensors
split across devices)
e other forms as well ...



Microscopic View



A Software Operator

e An operator kernel must be written for each general purpose
device

e CPUs, GPUs, etc.

e Usually multiple variants of a kernel exist
e for different sizes, e.g.

e But all must achieve high operation throughput
e Implies keeping the pipeline full



Balancing Operation Throughput

A machine can perform 2 32-bit FMA /cycle
Each FMA takes 4 cycles

By Little's law, n = Rt (with R =2 and t = 4), there are 8
FMAs in flight
Each FMA requires 3 operands

e each operand in a register

So 24 registers are needed for 8 FMAs

Consequently, there are also 24 loads in flight
e We are consuming 12 bytes/cycle (per 32-bit FMA)

e and if we're reading from memory, this is the bandwidth
required.



Another example

A machine can transfer 64-bits / cycle from RAM

e assume each load is also 64-bits, so 1 load/cycle

The latency of a load from RAM is 100 cycles

How many loads are required to saturate bandwidth?
e n= Rt, with R =1 and t = 100, so 100 loads in flight

Some alternatives:

e transfer data in blocks (cache line size = 64 bytes, about 8
loads)
e rely on a prefetcher



Latency Hiding through Parallelism

o Little’s Law tells us n parallel operations are needed to keep
the pipeline (or bandwidth) full
e i.e. “hide” the latency of the operation
e This n dictates how many other operations need to be in
flight
e memory for compute
e compute for memory
e If not enough operations are available (lack of parallelism) or
there are not enough resources (i.e., structural hazards, e.g.,
registers, queue sizes, bandwidth)
e then some of the latency will be exposed and throughput will

drop



The Roofline Model

e The Roofline model applies to regular numerical codes
e be skeptical of applications beyond regular numerical code
e Uses arithmetic intensity /, denoted in FLOPs/byte
e Floating point operations per byte 3
e (do not confuse with FLOP/S which is Floating point
operations per second)
e P =min(Tpeax, S X )
e T,cax is peak FLOPs/second of the machine
e [ is bandwidth in bytes/second
e Informally: if you performed 1 FLOP per byte of RAM read,
you cannot perform more FLOP/S than 8
e Generally, Tpeak is multiple teraflops/s, /3 is usually low
terabytes/s
e implies “reuse” of data required to reach high teraflop/s



Roofline graph
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Recommended Readings



Optional Further Readings

e Roofline: an insightful visual performance model for multicore
architectures

e All about Rooflines: Part 1 of How to Scale your Model

e Applying the Roofline Model


https://dl.acm.org/doi/10.1145/1498765.1498785
https://dl.acm.org/doi/10.1145/1498765.1498785
https://jax-ml.github.io/scaling-book/roofline/
https://spiral.ece.cmu.edu/pub-spiral/pubfile/ispass-2013_177.pdf
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