
CSC290/420 Machine Learning Systems for

Efficient AI

Running ML Programs

Sreepathi Pai

October 15, 2025

URCS

Outline

Running ML programs

Execution on a Bespoke Accelerator

Execution on a General Purpose Processor

Microscopic View

Recommended Readings

Outline

Running ML programs

Execution on a Bespoke Accelerator

Execution on a General Purpose Processor

Microscopic View

Recommended Readings

ML Machines

� Multicore CPUs

� GPUs

� Accelerators

� TPU

� Groq

� Amazon Inferentia

Abstract Problem

� Map operators to compute

units over time

� Ensure data flows respect

data dependences

� Obtain high throughput
(work / time)

� or minimum latency per

work (less important)

x

conv1

relu

conv2

relu

conv3

relu

conv4

pixel_shuffle

Concrete Problem

� Schedule operators and data flows on to machine
(“macroscopic view”)

� Needs timing for each operator and data flow

� Timing is “easy” when inputs and outputs have fixed,

unchanging sizes (i.e., not LLMs)

� Write a high performance operator implementation
(“microscopic view”)

� when not provided by hardware

� preferably tunable

� Tune schedule and operators until you reach peak throughput

Outline

Running ML programs

Execution on a Bespoke Accelerator

Execution on a General Purpose Processor

Microscopic View

Recommended Readings

Each operator type is its own functional unit

ReLU Conv Pixel
Shuffle

Controlx output

� To simplify, we can make each type of operator its own
functional unit

� With dedicated input and output buffers

� Other alternative:

� Build exact operator needed for ML program (e.g., 5x5

convolution over 128x128 grayscale images)

� Mapping is simplified, but wastes space

Just one convolution?

self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))

� Different number of in channels vs out channels (first two

arguments)

� Different convolution kernel sizes (5x5, 3x3)

� Different strides, padding

� Could have implemented this as different convolution units

� ReLU also operates on different size inputs

Serial Timeline

Conv Conv Conv Conv
R R R

PixShfl

I O
Time

Un
it

Pipeline Parallelism

� We can implement pipeline parallelism

� Different inputs are active at each unit

� Requires re-design of accelerator

� Need more buffers

� Need separate convolutional units

� Note: simple design has pipeline stages of different durations

With Pipeline Parallelism

ReLU

Pixel
Shuffle

Controlx output

Conv1

ReLU ReLU

Conv4Conv3Conv2

� Increased Parallelism demands increased resources

� Memory

� Compute

� This is true even on general purpose machines!

� generally increased memory usage

Data Parallelism

� Process multiple inputs at the same time

� on independent hardware

Simple DP

ReLU Conv Pixel
Shuffle

Controlx1 output1

ReLU Conv Pixel
Shuffle

Controlx2 output2

Pipelined DP

ReLU

Pixel
Shuffle

Controlx2 output2

Conv1

ReLU ReLU

Conv4Conv3Conv2

ReLU

Pixel
Shuffle

Controlx1 output1

Conv1

ReLU ReLU

Conv4Conv3Conv2

Outline

Running ML programs

Execution on a Bespoke Accelerator

Execution on a General Purpose Processor

Microscopic View

Recommended Readings

A General Purpose Architecture

RAM

Compute

� Compute may contain multiple cores

� Memory might be NUMA

Additional Complications

� Primarily, one size doesn’t fit all

� Fixed hardware, shared resources

� Utilization varies across operators

� Data path is shared among operators

� All operators read and write from the same memory

� Memory is limited

� All operators are implemented in software

Dynamic Scheduling

� Classic design: Scheduler +

Worker threads

� Scheduler divides operator

work into worker-size chunks

and places it in a work

queue/pool

� Worker threads grab chunks
from queue

� Most general method, can

be specialized

� Independent operators can
execute in parallel

� if there are resources

� Dependent operators wait

WorkerThread WorkerThread

Global Work Queue

Scheduler

matmul
conv
relu

Operator Queue

Static Scheduling

� For most ML programs, the sizes of inputs and outputs are

fixed

� Implies that timing of each operator can also be predicted in
advance

� Provided machine is fixed

� Timing information + Data flow can be used to generate a

schedule offline

� Haven’t seen this style of execution on CPUs/GPUs (yet?)

� only in specialized contexts like Groq’s chips where the

hardware requires it

Macroscopic Optimizations

� Fusion

� Combine two operators together

� Partitioning

� Separate the graph into parts, with each part executing on a

particular device

� Parallelism optimizations

� Data Parallelism (run multiple copies of the graph on different

user inputs)

� Pipeline Parallelism (run multiple operators on different user

inputs)

� Tensor Parallelism (run graphs on multiple devices with tensors

split across devices)

� other forms as well ...

Outline

Running ML programs

Execution on a Bespoke Accelerator

Execution on a General Purpose Processor

Microscopic View

Recommended Readings

A Software Operator

� An operator kernel must be written for each general purpose
device

� CPUs, GPUs, etc.

� Usually multiple variants of a kernel exist

� for different sizes, e.g.

� But all must achieve high operation throughput

� Implies keeping the pipeline full

Balancing Operation Throughput

� A machine can perform 2 32-bit FMA/cycle

� Each FMA takes 4 cycles

� By Little’s law, n = Rt (with R = 2 and t = 4), there are 8

FMAs in flight

� Each FMA requires 3 operands

� each operand in a register

� So 24 registers are needed for 8 FMAs

� Consequently, there are also 24 loads in flight

� We are consuming 12 bytes/cycle (per 32-bit FMA)

� and if we’re reading from memory, this is the bandwidth

required.

Another example

� A machine can transfer 64-bits / cycle from RAM

� assume each load is also 64-bits, so 1 load/cycle

� The latency of a load from RAM is 100 cycles

� How many loads are required to saturate bandwidth?

� n = Rt, with R = 1 and t = 100, so 100 loads in flight

� Some alternatives:

� transfer data in blocks (cache line size = 64 bytes, about 8

loads)

� rely on a prefetcher

Latency Hiding through Parallelism

� Little’s Law tells us n parallel operations are needed to keep
the pipeline (or bandwidth) full

� i.e. “hide” the latency of the operation

� This n dictates how many other operations need to be in
flight

� memory for compute

� compute for memory

� If not enough operations are available (lack of parallelism) or
there are not enough resources (i.e., structural hazards, e.g.,
registers, queue sizes, bandwidth)

� then some of the latency will be exposed and throughput will

drop

The Roofline Model

� The Roofline model applies to regular numerical codes

� be skeptical of applications beyond regular numerical code

� Uses arithmetic intensity I , denoted in FLOPs/byte

� Floating point operations per byte β

� (do not confuse with FLOP/S which is Floating point

operations per second)

� P = min(Tpeak, β × I)

� Tpeak is peak FLOPs/second of the machine

� β is bandwidth in bytes/second

� Informally: if you performed 1 FLOP per byte of RAM read,
you cannot perform more FLOP/S than β

� Generally, Tpeak is multiple teraflops/s, β is usually low

terabytes/s

� implies “reuse” of data required to reach high teraflop/s

Roofline graph

Giu.natale, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

https://creativecommons.org/licenses/by-sa/4.0

Outline

Running ML programs

Execution on a Bespoke Accelerator

Execution on a General Purpose Processor

Microscopic View

Recommended Readings

Optional Further Readings

� Roofline: an insightful visual performance model for multicore

architectures

� All about Rooflines: Part 1 of How to Scale your Model

� Applying the Roofline Model

https://dl.acm.org/doi/10.1145/1498765.1498785
https://dl.acm.org/doi/10.1145/1498765.1498785
https://jax-ml.github.io/scaling-book/roofline/
https://spiral.ece.cmu.edu/pub-spiral/pubfile/ispass-2013_177.pdf

	Running ML programs
	Execution on a Bespoke Accelerator
	Execution on a General Purpose Processor
	Microscopic View
	Recommended Readings

