
CSC290/420 Machine Learning Systems for

Efficient AI

Training - III (Finetuning)

Sreepathi Pai

November 3, 2025

URCS

Outline

ML Training before Finetuning

Full Fine-tuning

Adapters

Prefix Tuning

LoRa

Newer Techniques

Outline

ML Training before Finetuning

Full Fine-tuning

Adapters

Prefix Tuning

LoRa

Newer Techniques

ML Training so far (in the course)

� Start with random weights

� For each training example, compute output (forward mode)

� Calculate and back-propagate loss

� Repeat until convergence

Task-specific training

� Do different tasks require different models?

� Summarization

� Natural language generation

� Translation

� Question answering

� etc.

� Until about a decade ago, thinking was yes.

Costs

� Training a model for a task from scratch is expensive

� Deployment/Inference requires entire new set of task-specific

weights

Outline

ML Training before Finetuning

Full Fine-tuning

Adapters

Prefix Tuning

LoRa

Newer Techniques

GPT

� GPT (the original) broke up training into two phases

� Pre-training: General training with large dataset

� Fine-tuning: Task-specific training

Radford et al., 2018, Improving Language Understanding by Generative Pre-Training

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

Pre-Training and Fine-tuning

� Pre-train for a general task

� Once per model

� Resembles usual training

� (Full) Fine-tuning

� Start training with pre-trained weights

� Once per task

� (sometimes also called model tuning)

Costs

� A checkpoint is the parameters of a model

� For full-fine tuning, the checkpoint is the same size as the

original model

� Alternatives:

� Let tasks share some layers

� I.e., task-specific training only modifies weights in some layers,

not all

Outline

ML Training before Finetuning

Full Fine-tuning

Adapters

Prefix Tuning

LoRa

Newer Techniques

NLP Adapters

� Let ψw (x) be the original

function based on the

weights w

� An adapter composes a
function φw ,v (x) where w is
original weights

� And v0 is chosen so that

the two functions are

approximately equal

� During task-specific training,

only v is trained, not w
Houlsby et al., 2019, Parameter-Efficient Transfer

Learning for NLP

https://arxiv.org/pdf/1902.00751
https://arxiv.org/pdf/1902.00751

Costs

� |v | is chosen to be much smaller than |w |
� So training is ”cheap”

� Much fewer parameters trained

� Inference requires adapter layers to run

� Higher latency

� However, weights in adapter layers can be swapped out as

needed for different task

� Uses about 30% more parameters than BERT

Outline

ML Training before Finetuning

Full Fine-tuning

Adapters

Prefix Tuning

LoRa

Newer Techniques

Prefix Tuning

� Add a set of ”prefix”

parameters before the input

and encoding layers, Pθ

� During fine-tuning, train

these prefix parameters
Li and Liang, Prefix-Tuning: Optimizing Continuous

Prompts for Generation

https://arxiv.org/pdf/2101.00190
https://arxiv.org/pdf/2101.00190

Costs

� During training [finetuning], prefix is implemented as a MLP

� produces a prefix Pθ

� During inference

� load task-specific Pθ

� appears as a longer context/prefix/prompt

� Uses about 0.1% task-specific parameters (based on GPT-2)

Prompt Engineering / Zero-shot

� GPT-3 and newer excel at ”zero-shot” learning

� e.g., Summarization by simply suffixing ”TLDR” to prompt.

� No retraining/fine-tuning required

Outline

ML Training before Finetuning

Full Fine-tuning

Adapters

Prefix Tuning

LoRa

Newer Techniques

Low-rank

� Add a LoRa module that

contains two matrices A and

B

� During original training, B is

0.

� During fine-tuning, A and B

are trained

� Weight h = W0x + BAx

� Crucially, A ∈ Rr×k and

B ∈ Rd×r with

r � min(d , k)
Hu et al., LoRA: Low-Rank Adaptation Of Large

Language Models

https://openreview.net/pdf?id=nZeVKeeFYf9
https://openreview.net/pdf?id=nZeVKeeFYf9

Architecture

� During (original) training, the LoRa updates can be ignored

� Multiplying with 0

� During fine-tuning with LoRa, only A and B are tuned to task

� Uses 0.1% of original parameters (35MB vs 350GB for GPT-3)

Deployment

� Inference uses different A and B for each task

� However, these weights don’t need to be loaded separately

� as in adapters

� Instead, the weights of the models W0 can be combined with

BA

Costs

� Trains less than 0.1% of model’s parameters

� No extra cost during inference

� Alpaca 7B finetuned (full) cost about $600

� Alpaca 7B-LoRa used a single GPU and a few hours

Outline

ML Training before Finetuning

Full Fine-tuning

Adapters

Prefix Tuning

LoRa

Newer Techniques

Representation Tuning

� Techniques so far have been dubbed Parameter Efficient

Finetuning

� Instead of changing parameters, change representations they

encode

� Based on work that seeks to interpret LLMs

� Billed as Drop-in replacements for PEFT techniques

� Wu et al, ReFT: Representation Finetuning for Language

Models

https://arxiv.org/abs/2404.03592
https://arxiv.org/abs/2404.03592

	ML Training before Finetuning
	Full Fine-tuning
	Adapters
	Prefix Tuning
	LoRa
	Newer Techniques

