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ML Training before Finetuning



ML Training so far (in the course)

Start with random weights

For each training example, compute output (forward mode)

Calculate and back-propagate loss

Repeat until convergence



Task-specific training

e Do different tasks require different models?

e Summarization

Natural language generation

Translation

Question answering
e etc.

e Until about a decade ago, thinking was yes.



e Training a model for a task from scratch is expensive

e Deployment/Inference requires entire new set of task-specific
weights



Full Fine-tuning



e GPT (the original) broke up training into two phases
e Pre-training: General training with large dataset
e Fine-tuning: Task-specific training

Radford et al., 2018, Improving Language Understanding by Generative Pre-Training

P'..:;';:im Classification ‘ Start | Text ‘ Extract ‘J——{ Transformer H Linear |

Entailment ‘ Start | Premise ‘ Delim {Hypmhess I Extract J*-{ Transformer H Linear |

[ san [ Test1 [oeim [ Textz [ Exract \-—-{ i '_‘,L
Similarity - \-I-/\)-—| Linear ‘
12x [sat [ Tewz [oem | Tea1 | exact]tfm -
[ san | context [ peim | Answer1 [ Exract \_-{ i J+[ Linear |
Multiple Choice | stan [ Context [ peim | Answer2 | Exvact ‘_.| T J+{ Linear }_L:@

[ st [ context [ eim | AnswerN [ Exiact \7-_| T F+/ Linear


https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

Pre-Training and Fine-tuning

e Pre-train for a general task
e Once per model
e Resembles usual training
e (Full) Fine-tuning
e Start training with pre-trained weights
e Once per task
e (sometimes also called model tuning)



e A checkpoint is the parameters of a model

e For full-fine tuning, the checkpoint is the same size as the
original model

o Alternatives:

o Let tasks share some layers
e |.e., task-specific training only modifies weights in some layers,
not all



Adapters



NLP Adapters
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Houlsby et al., 2019, Parameter-Efficient Transfer
Learning for NLP


https://arxiv.org/pdf/1902.00751
https://arxiv.org/pdf/1902.00751

|v| is chosen to be much smaller than |w|

So training is " cheap”

e Much fewer parameters trained

Inference requires adapter layers to run

e Higher latency

e However, weights in adapter layers can be swapped out as
needed for different task

Uses about 30% more parameters than BERT



Prefix Tuning



Prefix Tuning

e Add a set of " prefix”
parameters before the input
and encoding layers, Py

e During fine-tuning, train

these prefix parameters

Li and Liang, Prefix-Tuning: Optimizing Continuous
Prompts for Generation
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https://arxiv.org/pdf/2101.00190
https://arxiv.org/pdf/2101.00190

e During training [finetuning], prefix is implemented as a MLP
e produces a prefix Py

e During inference
e |oad task-specific Py

e appears as a longer context/prefix/prompt

e Uses about 0.1% task-specific parameters (based on GPT-2)



Prompt Engineering / Zero-shot

e GPT-3 and newer excel at "zero-shot” learning
e e.g., Summarization by simply suffixing " TLDR” to prompt.

e No retraining/fine-tuning required



LoRa



e Add a LoRa module that
contains two matrices A and
B

e During original training, B is
0.

e During fine-tuning, A and B
are trained

e Weight h = Wpx + BAx

e Crucially, A € R and
B € RIX" with
r < min(d, k)

Hu et al., LoRA: Low-Rank Adaptation Of Large
Language Models
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Figure 1: Our reparametriza-
tion. We only train A and .


https://openreview.net/pdf?id=nZeVKeeFYf9
https://openreview.net/pdf?id=nZeVKeeFYf9

Architecture

e During (original) training, the LoRa updates can be ignored

e Multiplying with 0
e During fine-tuning with LoRa, only A and B are tuned to task
e Uses 0.1% of original parameters (35MB vs 350GB for GPT-3)



Deployment

e Inference uses different A and B for each task
e However, these weights don’t need to be loaded separately

e as in adapters

e Instead, the weights of the models W, can be combined with
BA



Trains less than 0.1% of model’s parameters

No extra cost during inference

Alpaca 7B finetuned (full) cost about $600

Alpaca 7B-LoRa used a single GPU and a few hours



Newer Techniques



Representation Tuning

e Techniques so far have been dubbed Parameter Efficient
Finetuning

e Instead of changing parameters, change representations they
encode

e Based on work that seeks to interpret LLMs
e Billed as Drop-in replacements for PEFT techniques

e Wu et al, ReFT: Representation Finetuning for Language
Models


https://arxiv.org/abs/2404.03592
https://arxiv.org/abs/2404.03592
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