
CSC266 Introduction to Parallel Computing

using GPUs

Understanding Memory Performance

Sreepathi Pai

September 27, 2017

URCS



Outline

Introduction

Caches

Performance of Caches



Outline

Introduction

Caches

Performance of Caches



Matrix Multiply – IJK

• Multiplying two matrices:

• A (m × n)

• B (n × k)

• C (m × k) [result]

• Here: m = n = k

for(ii = 0; ii < m; ii++)
for(jj = 0; jj < n; jj++)

for(kk = 0; kk < k; kk++)
C[ii * k + kk] += A[ii * n + jj] * B[jj * k + kk];



Matrix Multiply – IKJ

for(ii = 0; ii < m; ii++)
for(kk = 0; kk < k; kk++)

for(jj = 0; jj < n; jj++)
C[ii * k + kk] += A[ii * n + jj] * B[jj * k + kk];



Performance of the two versions?

• on 1024x1024 matrices of ints

• which is faster?

• by how much?



Performance of the two versions

• on 1024x1024 matrices

• Time for IJK: 0.554 s ± 0.003s (95% CI)

• Time for IKJ: 6.618 s ± 0.032s (95% CI)



What caused the nearly 12X slowdown?

• Matrix Multiply has a large number of arithmetic operations

• But the number of operations did not change

• Matrix Multiply also refers to a large number of array
elements

• Order in which they access elements changed

• But why should this matter?



Die shot of a processor (IBM Power 8)



Die shot of a processor (IBM Power 8)

extremetech

http://www.extremetech.com/computing/181102-ibm-power8-openpower-x86-server-monopoly


Outline

Introduction

Caches

Performance of Caches



The question

What are caches?



Answer?

Caches are a kind of fast(er) memory.



Obligatory question

Why don’t we build entire memory systems out of “cache

memory”?

see also: joke about black boxes in aeroplanes.



Physical Issues

• Not all memory types are equal

• Consider: SRAM, DRAM and magnetic storage

• Speed to access data

• Depends on size and type of memory

• SRAM > DRAM > Magnetic storage

• Density of storing data

• Bits per square millimeter

• SRAM < DRAM < Magnetic storage



The Memory Hierarchy – Part I

• Registers

• managed by compiler

• “logic”

• L1 cache

• small (10s KB), usually 1-cycle access

• SRAM (also “logic”)

• L2 cache

• largish (100s KB), 10s of cycles

• SRAM

• ...



The Memory Hierarchy – Part II

• L3 cache

• usually on multicores

• much larger (MB), 100s of cycles

• SRAM or (recently) embedded DRAM

• DRAM

• off-chip, large (GB)

• HDD

• Magnetic/Rotating Storage (TBs)

• Flash memory (GBs)



Performance of the hierarchy?

Why structure memory in a hierarchy?

• Each level of hierarchy adds a delay

• Time to access memory increases!

• Or does it?



Performance of the hierarchy

• Structures in memory hierarchy duplicate data stored further
away

• original meaning of the word cache

• If data is found at closer to processor (i.e. hit), read it from

there

• Otherwise (i.e. miss), pass request one level up the hierarchy



Why the hierarchy works in practice

• Data Reuse (or “locality”)

• Temporal (same data will be referred again)

• Spatial (data close to each other in space will be referred close

to each other in time)

• Speed differences

• Time to access L1: 1ns

• Branch mispredict: 3ns

• Time to access L2: 4ns

• Main memory access time: 100ns

• SSD access time: 16µs

• Rotating media access time: < 5 ms

• From Latency Numbers Every Programmer Should Know

http://www.eecs.berkeley.edu/~rcs/research/interactive_latency.html


The cache equation (informal)

Assume a one-level cache (i.e. cache + RAM):

latency = latencyhit

or

latency = latencymiss



The cache equation for one level of caches

latencyavg = (fractionhit) ∗ latencyhit + (1− fractionhit) ∗ latencymiss



Outline

Introduction

Caches

Performance of Caches



Cache Organization

• RAM is directly addressable

• Caches duplicate RAM contents

• accept same addresses

• translate that address internally

• Translation is a many-to-one function

• obviously, since caches are much smaller than RAM

• Therefore caches store:

• data

• “tag” (original address or part of original address)

• tag is used to verify data address



Cache Lookup

• Building blocks of translation functions:

• Direct Mapped

• Associative Lookup



A Direct Mapped Cache

• Converts data address to cache location
index = fn(address)

tag data0

tag data1

tag data2

tag data3

tag data4

tag data5

tag datan

.

.

.



A Fully Associative Cache

• Searches for address in cache

• also known as content-addressable memory

address

tag data

tag data

tag data

tag data

tag data

tag data

tag data

.

.

.

match



Set Associative Caches

• 4-way set-associative cache

• Lookup a set based on address (direct-mapped)

• Lookup address only within the set (associative)

tag data

tag data

tag data

tag data

tag data

tag data

tag data

.

.

.

tag data

tag data

tag data

tag data

tag data

tag data

tag data

.

.

.

tag data

tag data

tag data

tag data

tag data

tag data

tag data

.

.

.

tag data

tag data

tag data

tag data

tag data

tag data

tag data

.

.

.

index = fn(address)

0

1

2

3

4

5

n



The 3C model of cache misses

• Compulsory (or Cold) misses

• first reference to data

• always occur (?)

• Capacity misses

• data in cache is “evicted” once cache is full

• miss to data being evicted from cache

• these are absent in an infinite cache

• Conflict misses

• miss due to many-to-one conflict

• two different addresses map to the same cache address

• these do not occur in a fully associative cache

Due to Mark Hill

http://pages.cs.wisc.edu/~markhill/


Next class

Reducing misses using programming techniques



Summary

• Memory accesses are key to program performance

• nearly always the bottleneck in most programs

• The memory hierarchy lowers memory access latency

• Exploits “locality” of references

• Size/speed tradeoffs

• Caches are organized differently than RAM

• smaller

• implications for performance

• transparent to programmer

• not transparent to performance!


	Introduction
	Caches
	Performance of Caches

