CSC266 Introduction to Parallel Computing
using GPUs
Introduction to CUDA

Sreepathi Pai
October 18, 2017

URCS

Background
Memory
Code

Execution Model

Background

CUDA programmer’s view of the system

GPU

_PCle

SMO || SM1| -+ | SMn

A
: !

Data access in Shared memory vs Distributed systems

e Shared Memory system
e Same address space
e Data in the system accessed through load/store instructions
e E.g., multicore
e Distributed Memory System (e.g. MPI)
e (Usually) different address space
e Data in the system accessed through message-passing
e E.g., clusters

Is a GPU-containing system a distributed system?

e Does data live in the same address space?

e Is data in the entire system accessed through load/store
instructions?

Memory

e Addresses are contained in pointers
e GPU addresses are C/C++ pointers in CPU code

e True, in CUDA
e False, in OpenCL (c1::Buffer in CPU)

Allocating Host Memory

Data lives in CPU memory

Read/Written by CPU using load/store instructions

Allocated by malloc (or equivalent)

Freed by free (or equivalent)

Pointers cannot be deferenced by GPU

Allocating GPU Memory

Data lives in GPU memory

Read/Written by GPU using load/store instructions

Allocated by cudaMalloc (or cudaMallocManaged)

Freed by cudaFree

Pointers cannot be deferenced by CPU

Data transferred using copies (cudaMemcpy)

Allocating Pinned Memory

e Data lives in CPU memory
e Read/Written by CPU using load/store instructions

e Read/Written by GPU using load/store instructions over PCle
bus

e Same pointer value
e Allocated by cudaMallocHost (or cudaHostMalloc)
e Freed by cudaFree

e No transfers needed!

Mapping Host-allocated Memory to GPUs

e Data lives in CPU memory
e Read/Written by CPU using load/store instructions

e Read/Written by GPU using load/store instructions over PCle
bus

e Allocated by malloc

e Mapped by cudaHostRegister

e GPU uses different pointer (cudaHostGetDevicePointer)
e Freed by free

e No transfers needed!

Managed Memory

e Data lives in CPU memory or GPU memory

e Read/Written by CPU using load/store instructions
e Read/Written by GPU using load/store instructions
e But not by both at the same time!

e Same pointer value

e Freed by cudaFree

e No manual transfers needed!

e Data transferred “automagically” behind scenes

Pointer from Host GPU Same Pointer
CPU malloc Y N N
cudaMalloc N Y N
cudaHostMalloc Y Y Y
cudaHostRegister/GetDevicePointer Y Y N
cudaMallocManaged Y Y Y

Code

Host code and device code

CPU code callable from CPU (__host__)

GPU code callable from CPU (__global__)

GPU code callable from GPU (__device_.)

Code callable from both CPU and GPU (__host__,

device.)

CPU code callable from GPU (N/A)

CUDA source code layout

__global__
void vector_add(int *a, int *b, int *c, int N) {

}
int main(void) {

vector_add<<<...>>>(a, b, c, N);

}

CUDA Compilation Model (Simple)

All code lives in CUDA source files (. cu)
e nvcc compiler separates GPU and CPU code
e Inserts calls to appropriate CUDA runtime routines

GPU code is compiled to PTX or binary

e PTX code will be compiled to binary at runtime

CPU code is compiled by GCC (or clang)

e End result of nvcc run is a single executable
e On Linux, standard ELF executable

e Contains code for both CPU and GPU

e CUDA automatically sets up everything

e OpenCL does not
e No OpenCL equivalent of nvcc

Execution Model

Vector Addition again

__global__
void vector_add(int *a, int *b, int *c, int N) {

}
int main(void) {

vector_add<<<...>>>(a, b, c, N);

}

Execution starts on the CPU

e Program starts in main, as usual
e On first call to CUDA library, a GPU context is created

e GPU Context == CPU Process
e Can also create one automatically

e Default GPU is chosen automatically per thread

e |f multiple GPUs
Usually the newest, ties broken by the fastest

This is where default allocations and launches occur

Can be changed per thread (cudaSetDevice)

Memory Allocation and Copies

e cudaMalloc, etc. used to allocate memory
e CPU waits for allocation
e cudaMemcpy, etc. used to copy memory across

e CPU waits by default for copy to finish
e LATER LECTURES: non-blocking copying APIs

e Determine a thread block size: say, 256 threads
e Divide work by thread block size

e Round up

e [N/256]
e Configuration can be changed every call

int threads = 256;
int Nup = (N + threads - 1) / threads;

int blocks = Nup / threads;

vector_add<<<blocks, threads>>>(...)

Kernel Launch Configuration

e GPU kernels are SPMD kernels
e Single-program, multiple data
e All threads execute the same code
e Number of threads to execute is specified at launch time

e As a grid of B thread blocks of T threads each
e Total threads: B x T

e Reason: Only threads within the same thread block can
communicate with each other (cheaply)

e Other reasons too, but this is the only algorithm-specific reason

Distributing work in the kernel

__global__
vector_add(int *a, int *b, int *c, int N) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;

if(tid < N) {
c[tid] = altid] + b[tid];
}

}

e Maximum 232 threads supported

o gridDim, blockDim, blockldx and threadldx are
CUDA-provided variables

Blocking and Non-blocking APIs

e Blocking API (or operation)
e CPU waits for operation to finish
e e.g. simple cudaMemcpy

e Non-blocking API (or operation)

e CPU does not wait for operation to finish
e e.g. kernel launches
e You can wait explicitly using special CUDA APIs

Helpful Tips

e Each CUDA API call returns a status code
e Check this always
e |f an error occurred, this will contain error code
e Error may be related to this API call or previous non-blocking
API calls!
e Use cuda-memcheck tool to detect errors

e Slows down program, but can tell you of many errors

	Background
	Memory
	Code
	Execution Model

