
CSC266 Introduction to Parallel Computing

using GPUs

GPU Architecture II (Memory)

Sreepathi Pai

November 1, 2017

URCS



Outline

Basics

Global Memory

Shared Memory

L1, L2, Texture, and Constant Caches



Outline

Basics

Global Memory

Shared Memory

L1, L2, Texture, and Constant Caches



Memories

• Where data can be stored

• Two main, real spaces:

• Off-chip: “Global” or “device” memory

• On-chip: “Shared” memory

• Lots of “memory spaces” built on top of these two:

• where data is stored (i.e., global or shared)

• how data is accessed (i.e., which cache)

• to whom data is visible (e.g., all threads or only thread block)



Outline

Basics

Global Memory

Shared Memory

L1, L2, Texture, and Constant Caches



Global Memory

• GPU RAM, usually tens of gigabytes

• High-bandwidth access from GPU

• 300 GB/s to 1TB/s (depending on the GPU)

• Memory allocated using cudaMalloc (and equivalents)

• Contains following memory spaces:

• Global memory space

• Local memory space

• Texture memory space



Memory spaces in Global Memory

• Global Memory Space

• Used for all GPU data accessed through pointers

• Or for variables marked device

• Data is accessed through L2 cache

• Data is visible to all threads

• Local Memory space

• Automatically used for thread-local data

• E.g., register spills by compiler

• Data is visible only to single thread

• Data is accessed through L1/L2 cache

• Texture Memory Space

• Used for read-only texture data

• Data visible to all threads

• Data accessed through texture unit (or separate cache)

• More later today ...



Data Layout for GPU programs (AoS)

struct pt {
int x;
int y;

};

__global__
void aos_kernel(int n_pts, struct pt *p) {

int tid = blockIdx.x * blockDim.x + threadIdx.x;
int nthreads = blockDim.x * gridDim.x;

for(int i = tid; i < n_pts; i += nthreads) {
p[i].x = i;
p[i].y = i * 10;

}
}

In main():

struct pt *p;
cudaMalloc(&p, ...)



Data Layout for GPU programs (SoA)

struct pt {
int *x;
int *y;

};

__global__
void soa_kernel(int n_pts, struct pt p) {

int tid = blockIdx.x * blockDim.x + threadIdx.x;
int nthreads = blockDim.x * gridDim.x;

for(int i = tid; i < n_pts; i += nthreads) {
p.x[i] = i;
p.y[i] = i * 10;

}
}

In main():

struct pt p;
cudaMalloc(&p.x, ...)
cudaMalloc(&p.y, ...)



AoS vs SoA for GPU programs

• Array of Structures

• Structure of Arrays

• Which is better for CPU?

• Which is better for GPU?



AoS memory layout

p[0].x p[1].x p[2].x p[3].x p[4].xp[0].y p[1].y p[2].y p[3].y p[4].y

transaction boundary transaction boundary

• p[i].x memory bandwidth utilization?



SoA memory layout

p.x[0] p.x[2] p.x[4] p.x[6] p.x[8]p.x[1] p.x[3] p.x[5] p.x[7] p.x[9]

transaction boundary transaction boundary

p.y[0] p.y[2] p.y[4] p.y[6] p.y[8]p.y[1] p.y[3] p.y[5] p.y[7] p.x[9]

• p.x[i] memory bandwidth utilization?



AoS vs SoA Performance



AoS vs SoA: Number of Memory Transactions



Assigning Work to Threads

Blocked:

start = tid * blksize;
end = start + blksize;

for(i = start; i < N && i < end; i++)
a[i] = b[i] + c[i]

Interleaved:

start = tid;

for(i = start; i < N; i+=nthreads)
a[i] = b[i] + c[i]

Which, if any, is faster?



Blocking vs Interleaved



Summary of Global Memory Performance

• Global memory accessed in 32-byte chunks on current GPUs

• Ideally, each warp accesses four 32-byte chunks

• Bandwidth underutilized otherwise

• L2 cache is unable to exploit temporal locality

• Hence, for GPUs, prefer:

• SoA over AoS

• Assign work in interleaved vs blocked (if this affects memory

access pattern)



Outline

Basics

Global Memory

Shared Memory

L1, L2, Texture, and Constant Caches



Exploiting Locality: Shared Memory

• “Shared Memory” is on-chip software-managed cache, also

known as a scratchpad

• 48K maximum size/thread block

• GPU can have upto 128K

• Partitioned among thread blocks

• shared qualifier places variables in shared memory

• Can be used for communicating between threads of the same

thread block

__shared__ int x;

if(threadIdx.x == 0)
x = 1;

__syncthreads(); //required!

printf("%d\n", x);



Using shared memory for communication

• (Contrived) Find maximum number in each 256 element

chunk of large array

__global__ void chunkmax(int *a, int N, int *out) {
int tid = threadIdx.x + blockIdx.x * blockDim.x

...
}
main() {

cudaMallocManaged(&a, N*sizeof(int));

// fillup a

blocks = (N + 255) / 256;
cudaMallocManaged(&out, blocks*sizeof(int))
chunkmax<<<blocks, 256>>(a, N, out);
cudaDeviceSynchronize();

// print out
}



Serial Code

for(int block = 0; block < blocks; block++) {

blockmax = a[block*256];

for(int elem = block * 256;
elem < (block + 1) * 256 && elem < N;
elem++)

{
if(a[elem] > blockmax)
blockmax = a[elem];

}

out[block] = blockmax;
}



Try 1

• (Contrived) Find maximum number in each 256 element

chunk of large array

__global__ void chunkmax(int *a, int N, int *out) {
int tid = threadIdx.x + blockIdx.x * blockDim.x

__shared__ int tbmax;

if (tid < N)
return;

if(threadIdx.x == 0)
tbmax = a[tid]

__syncthreads()

if(a[tid] > tbmax)
tbmax = a[tid]

__syncthreads()

if(threadIdx.x == 0)
out[blockIdx.x] = tbmax

}



Try 2

__global__ void chunkmax(int *a, int N, int *out) {

__shared__ int tbmax;

...

if(threadIdx.x == 0)
tbmax = a[tid]

__syncthreads()
int mycopy;

do {
mycopy = tbmax;
__syncthreads();

if (a[tid] > mycopy)
tbmax = a[tid];

__syncthreads();

} while(a[tid] > tbmax);

if(threadIdx.x == 0)
out[blockIdx.x] = tbmax

}



Try 3?

__global__ void chunkmax(int *a, int N, int *out) {

...

if(threadIdx.x == 0)
tbmax = a[tid]

__syncthreads()
int mycopy;

do {
mycopy = tbmax;
__syncthreads();

if (a[tid] > mycopy)
tbmax = a[tid];

__syncthreads();

} while(mycopy != tbmax);

if(threadIdx.x == 0)
out[blockIdx.x] = tbmax

}



Using Shared Memory as a cache (SGEMM)

__shared__ float c_sub[BLOCKSIZE][BLOCKSIZE];

// calculate c_sub

__syncthreads();

// write out c_sub to memory

• Read Section 3.2.3 in CUDA C Programming Guide

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory


Outline

Basics

Global Memory

Shared Memory

L1, L2, Texture, and Constant Caches



Exploiting Spatial Locality: Texture Caches

• Textures are 2-D images that are “wrapped” around 3-D

models

• Exhibit 2-D locality, so textures have a separate cache

• GPU contains a texture fetch unit that non-graphics programs
can also use

• Step 1: map arrays to textures

• Step 2: replace array reads by tex1Dfetch(), tex2Dfetch()

• Catch: Only read-only data can be cached

• you can write to the array, but it may not become visible

through the texture in the same kernel call

• i.e. texture caches are not coherent with GPU memory

• Easiest way to use textures:

• const restrict *

• Compiler will automatically use texture cache for marked arrays



Constant Data Cache

• 64KB of “constant” data

• not written by kernel

• Suitable for read-only, “broadcast” data

• All threads in a warp read the same constant data item at the
same time

• what type of locality is this?

• Uses: Filter coefficients

• 2dconv: convolution matrix entries

• Lab 7 uses constant for image properties



Summary of Memory Performance

• Layout data structures in memory to maximize bandwidth

utilization

• Assign work to threads to maximize bandwidth utilization

• Rethink caching strategies

• identify readonly data

• identify blocks that you can load into shared memory

• identify tables of constants


	Basics
	Global Memory
	Shared Memory
	L1, L2, Texture, and Constant Caches

