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Memories

• Where data can be stored

• Two main, real spaces:

• Off-chip: “Global” or “device” memory

• On-chip: “Shared” memory

• Lots of “memory spaces” built on top of these two:

• where data is stored (i.e., global or shared)

• how data is accessed (i.e., which cache)

• to whom data is visible (e.g., all threads or only thread block)
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Global Memory

• GPU RAM, usually tens of gigabytes

• High-bandwidth access from GPU

• 300 GB/s to 1TB/s (depending on the GPU)

• Memory allocated using cudaMalloc (and equivalents)

• Contains following memory spaces:

• Global memory space

• Local memory space

• Texture memory space



Memory spaces in Global Memory

• Global Memory Space

• Used for all GPU data accessed through pointers

• Or for variables marked device

• Data is accessed through L2 cache

• Data is visible to all threads

• Local Memory space

• Automatically used for thread-local data

• E.g., register spills by compiler

• Data is visible only to single thread

• Data is accessed through L1/L2 cache

• Texture Memory Space

• Used for read-only texture data

• Data visible to all threads

• Data accessed through texture unit (or separate cache)

• More later today ...



Data Layout for GPU programs (AoS)

struct pt {
int x;
int y;

};

__global__
void aos_kernel(int n_pts, struct pt *p) {

int tid = blockIdx.x * blockDim.x + threadIdx.x;
int nthreads = blockDim.x * gridDim.x;

for(int i = tid; i < n_pts; i += nthreads) {
p[i].x = i;
p[i].y = i * 10;

}
}

In main():

struct pt *p;
cudaMalloc(&p, ...)



Data Layout for GPU programs (SoA)

struct pt {
int *x;
int *y;

};

__global__
void soa_kernel(int n_pts, struct pt p) {

int tid = blockIdx.x * blockDim.x + threadIdx.x;
int nthreads = blockDim.x * gridDim.x;

for(int i = tid; i < n_pts; i += nthreads) {
p.x[i] = i;
p.y[i] = i * 10;

}
}

In main():

struct pt p;
cudaMalloc(&p.x, ...)
cudaMalloc(&p.y, ...)



AoS vs SoA for GPU programs

• Array of Structures

• Structure of Arrays

• Which is better for CPU?

• Which is better for GPU?



AoS memory layout

p[0].x p[1].x p[2].x p[3].x p[4].xp[0].y p[1].y p[2].y p[3].y p[4].y

transaction boundary transaction boundary

• p[i].x memory bandwidth utilization?



SoA memory layout

p.x[0] p.x[2] p.x[4] p.x[6] p.x[8]p.x[1] p.x[3] p.x[5] p.x[7] p.x[9]

transaction boundary transaction boundary

p.y[0] p.y[2] p.y[4] p.y[6] p.y[8]p.y[1] p.y[3] p.y[5] p.y[7] p.x[9]

• p.x[i] memory bandwidth utilization?



AoS vs SoA Performance



AoS vs SoA: Number of Memory Transactions



Assigning Work to Threads

Blocked:

start = tid * blksize;
end = start + blksize;

for(i = start; i < N && i < end; i++)
a[i] = b[i] + c[i]

Interleaved:

start = tid;

for(i = start; i < N; i+=nthreads)
a[i] = b[i] + c[i]

Which, if any, is faster?



Blocking vs Interleaved



Summary of Global Memory Performance

• Global memory accessed in 32-byte chunks on current GPUs

• Ideally, each warp accesses four 32-byte chunks

• Bandwidth underutilized otherwise

• L2 cache is unable to exploit temporal locality

• Hence, for GPUs, prefer:

• SoA over AoS

• Assign work in interleaved vs blocked (if this affects memory

access pattern)
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Exploiting Locality: Shared Memory

• “Shared Memory” is on-chip software-managed cache, also

known as a scratchpad

• 48K maximum size/thread block

• GPU can have upto 128K

• Partitioned among thread blocks

• shared qualifier places variables in shared memory

• Can be used for communicating between threads of the same

thread block

__shared__ int x;

if(threadIdx.x == 0)
x = 1;

__syncthreads(); //required!

printf("%d\n", x);



Using shared memory for communication

• (Contrived) Find maximum number in each 256 element

chunk of large array

__global__ void chunkmax(int *a, int N, int *out) {
int tid = threadIdx.x + blockIdx.x * blockDim.x

...
}
main() {

cudaMallocManaged(&a, N*sizeof(int));

// fillup a

blocks = (N + 255) / 256;
cudaMallocManaged(&out, blocks*sizeof(int))
chunkmax<<<blocks, 256>>(a, N, out);
cudaDeviceSynchronize();

// print out
}



Serial Code

for(int block = 0; block < blocks; block++) {

blockmax = a[block*256];

for(int elem = block * 256;
elem < (block + 1) * 256 && elem < N;
elem++)

{
if(a[elem] > blockmax)
blockmax = a[elem];

}

out[block] = blockmax;
}



Try 1

• (Contrived) Find maximum number in each 256 element

chunk of large array

__global__ void chunkmax(int *a, int N, int *out) {
int tid = threadIdx.x + blockIdx.x * blockDim.x

__shared__ int tbmax;

if (tid < N)
return;

if(threadIdx.x == 0)
tbmax = a[tid]

__syncthreads()

if(a[tid] > tbmax)
tbmax = a[tid]

__syncthreads()

if(threadIdx.x == 0)
out[blockIdx.x] = tbmax

}



Try 2

__global__ void chunkmax(int *a, int N, int *out) {

__shared__ int tbmax;

...

if(threadIdx.x == 0)
tbmax = a[tid]

__syncthreads()
int mycopy;

do {
mycopy = tbmax;
__syncthreads();

if (a[tid] > mycopy)
tbmax = a[tid];

__syncthreads();

} while(a[tid] > tbmax);

if(threadIdx.x == 0)
out[blockIdx.x] = tbmax

}



Try 3?

__global__ void chunkmax(int *a, int N, int *out) {

...

if(threadIdx.x == 0)
tbmax = a[tid]

__syncthreads()
int mycopy;

do {
mycopy = tbmax;
__syncthreads();

if (a[tid] > mycopy)
tbmax = a[tid];

__syncthreads();

} while(mycopy != tbmax);

if(threadIdx.x == 0)
out[blockIdx.x] = tbmax

}



Using Shared Memory as a cache (SGEMM)

__shared__ float c_sub[BLOCKSIZE][BLOCKSIZE];

// calculate c_sub

__syncthreads();

// write out c_sub to memory

• Read Section 3.2.3 in CUDA C Programming Guide

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory
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Exploiting Spatial Locality: Texture Caches

• Textures are 2-D images that are “wrapped” around 3-D

models

• Exhibit 2-D locality, so textures have a separate cache

• GPU contains a texture fetch unit that non-graphics programs
can also use

• Step 1: map arrays to textures

• Step 2: replace array reads by tex1Dfetch(), tex2Dfetch()

• Catch: Only read-only data can be cached

• you can write to the array, but it may not become visible

through the texture in the same kernel call

• i.e. texture caches are not coherent with GPU memory

• Easiest way to use textures:

• const restrict *

• Compiler will automatically use texture cache for marked arrays



Constant Data Cache

• 64KB of “constant” data

• not written by kernel

• Suitable for read-only, “broadcast” data

• All threads in a warp read the same constant data item at the
same time

• what type of locality is this?

• Uses: Filter coefficients

• 2dconv: convolution matrix entries

• Lab 7 uses constant for image properties



Summary of Memory Performance

• Layout data structures in memory to maximize bandwidth

utilization

• Assign work to threads to maximize bandwidth utilization

• Rethink caching strategies

• identify readonly data

• identify blocks that you can load into shared memory

• identify tables of constants
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