CSC266 Introduction to Parallel Computing
using GPUs
GPU Architecture Il (Memory)

Sreepathi Pai
November 1, 2017

URCS

Basics
Global Memory
Shared Memory

L1, L2, Texture, and Constant Caches

Basics

e Where data can be stored

e Two main, real spaces:
e Off-chip: “Global” or “device” memory
e On-chip: “Shared” memory

e Lots of “memory spaces” built on top of these two:
e where data is stored (i.e., global or shared)

e how data is accessed (i.e., which cache)
e to whom data is visible (e.g., all threads or only thread block)

Global Memory

Global Memory

GPU RAM, usually tens of gigabytes
High-bandwidth access from GPU
e 300 GB/s to 1TB/s (depending on the GPU)

Memory allocated using cudaMalloc (and equivalents)

Contains following memory spaces:
e Global memory space
e Local memory space
e Texture memory space

Memory spaces in Global Memory

e Global Memory Space

Used for all GPU data accessed through pointers
Or for variables marked __device__

Data is accessed through L2 cache

Data is visible to all threads
e Local Memory space
e Automatically used for thread-local data
e E.g., register spills by compiler
e Data is visible only to single thread
e Data is accessed through L1/L2 cache
e Texture Memory Space
e Used for read-only texture data
e Data visible to all threads
e Data accessed through texture unit (or separate cache)

More later today ...

Data Layout for GPU programs (AoS)

struct pt {
int x;
int y;
};

__global__

void aos_kernel(int n_pts, struct pt *p) {
int tid = blockIdx.x * blockDim.x + threadldx.x;
int nthreads = blockDim.x * gridDim.x;

for(int i = tid; i < n_pts; i += nthreads) {

plil.x = i;
plil.y = i * 10;

In main():

struct pt *p;
cudaMalloc(&p, ...)

Data Layout for GPU programs (SoA)

struct pt {
int *x;
int *y;

}}

__global__

void soa_kernel(int n_pts, struct pt p) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int nthreads = blockDim.x * gridDim.x;

for(int i = tid; i < n_pts; i += nthreads) {
p.-x[i]l = i;
p.y[il = i * 10;

In main():

struct pt p;
cudaMalloc(&p.x, ...)
cudaMalloc(&p.y, ...)

AoS vs SoA for GPU programs

Array of Structures

Structure of Arrays
Which is better for CPU?
Which is better for GPU?

AoS memory layout

transaction boundary transaction boundary

pl0lx | plOly | plilx | plily | pl2lx | pl2ly | p[31x | p[3ly | pl4lx | pl4ly

e p[i].x memory bandwidth utilization?

SoA memory layout

transaction boundary transaction boundary

px[0] | px[1] px[2] | px[3] | px[4] | pxIS] | px[6] | px[7] | px[8] | px[9]

pyl0] | py[ll | py[2] | pyI3] | py[4] | pyIS] | py6] [py[7] | pyi8] | pxI9]

e p.x[i] memory bandwidth utilization?

AoS vs SoA Performance

—4— A0S — @& SOA

10

Runtime (ms)

0 T T T
0 20000000 40000000 60000000 80000000 100000000 120000000

Array Size

AoS vs SoA: Number of Memory Transactions

—4— A0S —m— SOA

14000000
% 12000000
=
i)
=
v
&
2 10000000
o
5
ul
@
=
~— 8000000 -
u
=
k=)
=
v
3 60000001
f=y
o
=
@
o
S 4000000
wn
©
o
o
© 2000000

0 T T T T T
o 20000000 40000000 60000000 80000000 100000000 120000000
Array Size

Assigning Work to Threads

Blocked:

start = tid * blksize;
end = start + blksize;

for(i = start; i < N && i < end; i++)
alil = b[i] + c[il

Interleaved:
start = tid;

for(i = start; i < N; i+=nthreads)
alil = b[i] + c[il

Which, if any, is faster?

Blocking vs Interleaved

| Blocked Striped

0.002

0.0015
)

0 0.001
=
=

0.0005

1 T T T T T T T T T T T T T T T T T T
41000 141000 241000 341000 441000 541000 641000 741000 841000 941000
Vector size

Summary of Global Memory Performance

e Global memory accessed in 32-byte chunks on current GPUs
e Ideally, each warp accesses four 32-byte chunks

e Bandwidth underutilized otherwise

e L2 cache is unable to exploit temporal locality
e Hence, for GPUs, prefer:

e SoA over AoS

e Assign work in interleaved vs blocked (if this affects memory

access pattern)

Shared Memory

Exploiting Locality: Shared Memory

e “Shared Memory” is on-chip software-managed cache, also
known as a scratchpad

e 48K maximum size/thread block

e GPU can have upto 128K

e Partitioned among thread blocks

e __shared__ qualifier places variables in shared memory

e Can be used for communicating between threads of the same
thread block

__shared__ int x;

if (threadIdx.x == 0)
x =1;
syncthreads(); //required!

printf ("%d\n", x);

Using shared memory for communication

e (Contrived) Find maximum number in each 256 element
chunk of large array

__global__ void chunkmax(int *a, int N, int *out) {
int tid = threadIdx.x + blockIdx.x * blockDim.x
main() {
cudaMallocManaged(&a, Nxsizeof (int));
// fillup a
blocks = (N + 255) / 256;
cudaMallocManaged (&out, blocks*sizeof (int))
chunkmax<<<blocks, 256>>(a, N, out);

cudaDeviceSynchronize() ;

// print out

Serial Code

for(int block = 0; block < blocks; block++) {
blockmax = a[block*256] ;

for(int elem = block * 256;
elem < (block + 1) * 256 && elem < N;

elem++)
{
if(alelem] > blockmax)
blockmax = al[elem];
}

out[block] = blockmax;
}

Try 1

e (Contrived) Find maximum number in each 256 element
chunk of large array

__global__ void chunkmax(int *a, int N, int *out) {
int tid = threadIdx.x + blockIdx.x * blockDim.x

__shared__ int tbmax;

if (tid < N)
return;

if (threadIdx.x == 0)
tbmax = a[tid]

__syncthreads ()

if(altid] > tbmax)
tbmax = al[tid]

__syncthreads ()

if (threadIdx.x == 0)
out [blockIdx.x] = tbmax

}

__global__ void chunkmax(int *a, int N, int *out)

__shared__ int tbmax;

if (threadIdx.x == 0)
tbmax = a[tid]

__syncthreads ()
int mycopy;

do {
mycopy = tbmax;
__syncthreads();

if (altid] > mycopy)
tbmax = al[tid];
__syncthreads();

} while(al[tid] > tbmax);
if (threadIdx.x == 0)

out [blockIdx.x] = tbmax
}

__global_

if (threadIdx.x == 0)
tbmax = a[tid]

__syncthreads ()
int mycopy;

do {
mycopy = tbmax;
__syncthreads();

if (altid] > mycopy)
tbmax = altid];
syncthreads() ;

} while(mycopy != tbmax);

if (threadIdx.x == 0)
out [blockIdx.x] = tbmax
}

void chunkmax(int *a, int N, int *out) {

Using Shared Memory as a cache (SGEMM)

__shared__ float c_sub[BLOCKSIZE] [BLOCKSIZE];
// calculate c_sub
__syncthreads();

// write out c_sub to memory

e Read Section 3.2.3 in CUDA C Programming Guide

BLOCK_SIZE BLOCK_SIZE
B.height

BLOCK_SIZE:1,

Aheight

oW

BLOCK_SIZE

BLOCK_SIZE-1
> -
BLOCK_SIZE BLOCK_SIZE BLOCK_SIZE

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

L1, L2, Texture, and Constant Caches

Exploiting Spatial Locality: Texture Caches

e Textures are 2-D images that are “wrapped” around 3-D
models

e Exhibit 2-D locality, so textures have a separate cache

e GPU contains a texture fetch unit that non-graphics programs
can also use

e Step 1: map arrays to textures
e Step 2: replace array reads by tex1Dfetch(), tex2Dfetch()
e Catch: Only read-only data can be cached
e you can write to the array, but it may not become visible
through the texture in the same kernel call
e i.e. texture caches are not coherent with GPU memory
e Easiest way to use textures:

e const __restrict__ *

e Compiler will automatically use texture cache for marked arrays

Constant Data Cache

64KB of “constant” data

e not written by kernel

Suitable for read-only, "broadcast” data

e All threads in a warp read the same constant data item at the
same time

e what type of locality is this?

Uses: Filter coefficients

e 2dconv: convolution matrix entries

e Lab 7 uses __constant__ for image properties

Summary of Memory Performance

e lLayout data structures in memory to maximize bandwidth

utilization
e Assign work to threads to maximize bandwidth utilization

e Rethink caching strategies

e identify readonly data
e identify blocks that you can load into shared memory
e identify tables of constants

	Basics
	Global Memory
	Shared Memory
	L1, L2, Texture, and Constant Caches

