CSC266 Introduction to Parallel Computing
using GPUs
Synchronization and Communication

Sreepathi Pai
November 8, 2017

URCS



Barriers
Atomics
Warp Primitives

Memory Fences



Barriers



Thread Block barriers

e Reads and Writes to the same location in shared memory
must be separated by a barrier

__syncthreads ()



Warp Synchronous Programming

Is this code okay?

__shared__ volatile int values[8];
int warpid = threadIdx.x / 32;

if (threadIdx.x % 32 == 0)
values [warpid] = threadIdx.x;

printf ("%d\n", values[warpid]);



Global barriers?

e Does the GPU support global barriers?

e If not, why not?



Unsafe Global Barriers

Calculate residency R of kernel (use

cudaOccupancyMaxActiveBlocksPerMultiprocessor)

Launch nSM % R blocks, where nSM is number of SMs

Use global barrier between blocks!

Usually known as Persistent Threads



CUDA 9: Global Barriers/Cooperative Kernels

e Adds Global Barriers support to CUDA

e And lots more! (See “Cooperative Groups")

grid_group grid = this_grid()
grid.sync()

e Instead of assuming which blocks are running, discover that at
runtime

e Limit synchronization to those blocks


http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cooperative-groups

CUDA 9: Warp Barriers

e Volta GPUs no longer execute warps in lockstep
e “Warp-synchronous” in CUDA literature
e They can, but it is no longer required

e Every thread has its own PC

e New __syncwarp() barrier for threads in warp

e Largely for use by code that assumes warp-synchronous
execution



Atomics



Atomic Compare and Swap

atomicCAS(address, compare, val)

Pseudocode, ATOMIC means it executes all the instructions inside

“atomically”.
ATOMIC {
cur = *address;
if (cur == compare)

*address = val;

return cur;

}



Other Atomic Functions

Arithmetic

e atomicAdd, atomicSub

Minimum /Maximum

e atomicMin, atomicMax

e Increase/Decrease
e atomicInc, atomicDec
e Always increase or decrease by 1
e Read definitions carefully!

e Bitwise

e atomicAnd, atomicOr, atomicXor



How Expensive are Atomics?

e Atomics to same location must be executed serially

e Atomics to different locations in same cache line can be
executed in parallel

e Atomics to different locations execute in parallel

e "“As cheap as writes"



Other Atomic Functions as CAS

e Can we implement all other atomic functions using just CAS?



Locks with Atomic CAS?

while(atomicCAS(lock, UNLOCKED, LOCKED) == UNLOCKED) ;
// do something
lock = UNLOCKED;



Why Spinlocks Don’t Work on GPUs

e What happens when two threads in the same warp try to
obtain the lock?



Warp Primitives



e Allow threads in warps to communicate without using shared

memory

e All deprecated in CUDA 9.0 and replaced by more general
functions

e See CUDA 8.0 documentation for now



e __any(predicate)

e Each thread in warp gets 1 if any predicate is 1
e _all(predicate)

e Each thread in warp gets 1 if only all predicates are 1
e _ballot(predicate)

e Each thread gets bit pattern of predicates
e Use __popc() and __ffs for further manipulation



Warp Shuffles

e Allow warps to transfer data to each other

e All functions below are deprecated in CUDA 9.0

T __shfl(T var, int srclLane, int width=warpSize);

T __shfl_up(T var, unsigned int delta, int width=warpSize);
T __shfl_down(T var, unsigned int delta, int width=warpSize);
T __shfl_xor(T var, int laneMask, int width=warpSize);



Warp Permutation using Warp Shuffles

e Assume 4 threads in warp,
i.e. 4 lanes

e Can read other lane's values
thread in warp

using lane index 01 2 3

e Example: Permutation vall1 [5]19]2]6

(pictured)
val2 = __shfl(vall, lane) ﬁ%\{

lane | 3]1]10]2

e Example: All lanes read val

from lane 0 (broadcast)
_shfl(val, 0)

val_t0 =

val2 |6]19(5]2

e __shfl up and __shfl down
“shift” values across lanes



Reducing the number of atomics

Adapted from the CUDA programming guide:
{

unsigned int writemask = __ballot(1);
unsigned int total = __popc(writemask);
unsigned int prefix = __popc(writemask & __lanemask_1t());
// Find the lowest-numbered active lane
int elected_lane = __ffs(writemask) - 1;
int base_offset = 0;
if (prefix == 0) {
base_offset = atomicAdd(p, total);
}

base_offset = __shfl(base_offset, elected_lane);
int thread_offset = prefix + base_offset;
return thread_offset;



Memory Fences



Memory Consistency (or Ordering)

e Assume all variables below start as 0

/* Thread 0 */
val_tO = 100;
written_val_t0 = 1;

/* Thread 1 */

while(write_val_t0 == 0);
printf ("%d\n", val_tO0);

Will the program ever print zero?



Memory Consistency

In what order are reads and writes in one thread seen by other
threads?



Enforcing Memory Ordering — Memory Fences

e __threadfence block() — X: block
e __threadfence() — X: GPU

e __threadfence_system() — X: system

All writes made by threads in same X before executing fence are
ordered before writes made after executing fence.
// writes before fence

fence ()
// writes after fence



	Barriers
	Atomics
	Warp Primitives
	Memory Fences

