
CSC266 Introduction to Parallel Computing

using GPUs

Heterogeneous Parallelism

Sreepathi Pai

November 15, 2017

URCS

Outline

Heterogeneous Parallelism

Streams

Stream Synchronization

Outline

Heterogeneous Parallelism

Streams

Stream Synchronization

CPU/GPU systems

CPUPCIe

CPU RAMGPU RAM

SM0 SM1 SMn

GPU

Using both the CPU and GPU

Reasons to use the CPU:

• Not enough parallelism

• e.g. matrix multiply on small matrices

• Not SPMD

• e.g. producer–consumer parallelism

• task parallelism

• Legacy binary code (e.g. libraries)

Parallelism on the CPU

• Multiple Processes

• Standard Unix way

• fork and join

• Multiple Threads

• Standard Windows way

• Also pthreads

• And combinations thereof

Outline

Heterogeneous Parallelism

Streams

Stream Synchronization

The Default Stream

• Created automatically by CUDA

• All kernel launches and memory copies placed on default
stream

• If no stream specified

• All commands on the same stream execute in order

Default Streams in CUDA 7+

• Prior to CUDA 7, one default stream per process

• All threads share the same stream

• After CUDA 7, option to have one default stream per thread

• All threads have their own stream.

• You have to opt-in during compilation --default-stream

per-thread

• These streams are still blocking streams

https://devblogs.nvidia.com/parallelforall/gpu-pro-tip-cuda-7-streams-simplify-concurrency/

Creating Streams Explicitly

• Most GPU commands take an optional stream parameter

• kernel<<<blocks, threads, smem, stream>>>()

• cudaMemcpyAsync(..., stream)

• stream can be 0 (default) or explicitly created stream.

• Also called non-default streams

• Creating non-default streams:

cudaCreateStream()
cudaCreateStreamWithFlags()
cudaCreateStreamWithPriority()

Terminology

• Non-blocking: CPU does not wait for operation to complete

• All kernel calls

• called “asynchronous” in NVIDIA docs

• Blocking: CPU waits for operation to complete

• All memory copies involving host but not host pinned memory

(even those marked Async)

• called “synchronous” in NVIDIA docs

• Implicit Synchronization: Operation acts as a “barrier”

• Operations on non-default streams vis-a-vis default stream

• Example:

cudaStream_t a, b;

cudaCreateStream(&a)
cudaCreateStream(&b)

kernel_a<<<..., a>>>() // Stream A
kernel_c<<<..., 0>>>() // Default Stream
kernel_b<<<..., b>>>() // Stream B

http://docs.nvidia.com/cuda/cuda-runtime-api/api-sync-behavior.html#api-sync-behavior

Non-blocking Streams

• Streams created with cudaStreamCreate implicitly
synchronize with the default stream

• Wait for all existing default stream operations to complete

• Default stream waits for existing operations on streams to

complete

• Non-blocking streams do not implicitly synchronize with
default stream

• Created with cudaCreateStreamWithFlags

• What you usually want

• Or avoid mixing default streams and non-default streams

cudaCreateStreamWithFlags(&a, cudaStreamNonBlocking)
cudaCreateStreamWithFlags(&b, cudaStreamNonBlocking)

kernel_a<<<..., a>>>() // Stream A
kernel_c<<<..., 0>>>() // Default Stream
kernel_b<<<..., b>>>() // Stream B

Implicitly Serializing Operations

• Some CUDA API calls implicitly act as barriers

• Block CPU until all operations on GPU are completed

• Prevent any other operations from starting until API is

completed

• Example:

• cudaMalloc

• No official list

• Diagnose by looking at timeline in NVProfiler

Stuff I’m not going to cover in detail

• Unified memory interactions with streams

• Remember managed memory cannot be accessed on both CPU

and GPU at same time

• See cudaStreamAttachMemAsync documentation.

• Priority Streams

• Kernels on high-priority streams “pre-empt” over running

kernels

• Only two levels of priority supported in Kepler

• Not widely supported

Outline

Heterogeneous Parallelism

Streams

Stream Synchronization

Test for completion

• Have non-blocking items on stream finished?

cudaStreamQuery(stream)

• returns cudaSuccess if all operations on stream are complete

Wait for completion (all)

• Wait for all non-blocking items on stream to finish?

• Waiting behaviour (can be changed):

• Busy-wait

• Yield

cudaStreamSynchronize(stream)

• You can also use cudaDeviceSynchronize

• Not recommended

Targeted Waiting

• Waiting for specific events (e.g. kernel a below)

cudaCreateStreamWithFlags(&a, cudaStreamNonBlocking);
cudaMallocHost(&repeat, sizeof(int));

do {
*repeat = 0;

kernel_a<<<..., a>>>(repeat)
kernel_b<<<..., a>>>()

cudaStreamSynchronize(a);

} while(*repeat > 0);

Synchronizing Across Streams

• Waiting in one stream for
operations in another
stream

• A in stream 1

• B in stream 2

• C in ?

• Across different processes?

• Not covered in course

A

C

B

Events

• Third kind of operation in stream

• Other two are Kernels, memory copies

• Placed in order in stream with kernels and memory copies

...
cudaEvent_t ev;

cudaCreateEventWithFlags(&ev, flags)
cudaCreateStreamWithFlags(&s, ...);
...

cudaEventRecord(ev, s); // places ev in stream s

• Interesting flags:

• cudaEventBlockingSync: causes CPU to yield (instead of

busy-waiting)

• cudaEventDisableTiming: does not record timing data

Targeted Waiting with Events

cudaCreateStreamWithFlags(&a, cudaStreamNonBlocking);
cudaCreateEventWithFlags(&ev, cudaEventDisableTiming);
cudaMallocHost(&repeat, sizeof(int));

do {
*repeat = 0;

kernel_a<<<..., a>>>(repeat)
cudaRecordEvent(ev, a); // asynchronous
kernel_b<<<..., a>>>()

cudaEventSynchronize(ev);
} while(*repeat > 0);

cudaStreamSynchronize(a); // wait for everything to complete

Waiting Across Streams

A

C

B

cudaCreateStreamWithFlags(&a, cudaStreamNonBlocking);
cudaCreateStreamWithFlags(&b, cudaStreamNonBlocking);

cudaCreateEventWithFlags(&ev, cudaEventDisableTiming);

A<<<...., a>>>();

B<<<...., b>>>();
cudaEventRecord(ev_b, b):

cudaStreamWaitEvent(a, ev_b); // places wait for ev_b in a
C<<<...., a>>>(); // note implicitly waits for a

Callbacks

• Can also create callbacks on stream operations

• Fourth type of operation in stream queue

• Called when all currently queued operations on a stream are
completed

• Blocks all further operations on stream until callback finished

f (cudaStream_t t, cudaError_t status, void *userData) {
...

}

A<<<..., a>>>();
cudaStreamAddCallback(a, f, NULL, 0); // B will execute after f
B<<<...., a>>>(); // placed on queue asynchronously

Further Reading

• How to Overlap Data Transfers in CUDA/C++

https://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/

	Heterogeneous Parallelism
	Streams
	Stream Synchronization

