Preemptive Thread Block Scheduling with
Online Structural Runtime Prediction for Concurrent
GPGPU Kernels

Sreepathi Pai
The University of Texas
at Austin
Austin, Texas
sreepai@ices.utexas.edu

ABSTRACT

Recent NVIDIA Graphics Processing Units (GPUs) can ex-
ecute multiple kernels concurrently. On these GPUs, the
thread block scheduler (TBS) currently uses the FIFO pol-
icy to schedule thread blocks of concurrent kernels. We
show that the FIFO policy leaves performance to chance,
resulting in significant loss of performance and fairness. To
improve performance and fairness, we propose use of the
preemptive Shortest Remaining Time First (SRTF) policy
instead. Although SRTF requires an estimate of runtime
of GPU kernels, we show that such an estimate of the run-
time can be easily obtained using online profiling and ex-
ploiting a simple observation on GPU kernels’ grid struc-
ture. Specifically, we propose a novel Structural Runtime
Predictor. Using a simple Staircase model of GPU kernel
execution, we show that the runtime of a kernel can be pre-
dicted by profiling only the first few thread blocks. We eval-
uate an online predictor based on this model on benchmarks
from ERCBench, and find that it can estimate the actual
runtime reasonably well after the execution of only a sin-
gle thread block. Next, we design a thread block scheduler
that is both concurrent kernel-aware and uses this predictor.
We implement the Shortest Remaining Time First (SRTF)
policy and evaluate it on two-program workloads from ER-
CBench. SRTF improves STP by 1.18x and ANTT by 2.25x
over FIFO. When compared to MPMax, a state-of-the-art
resource allocation policy for concurrent kernels, SRTF im-
proves STP by 1.16x and ANTT by 1.3x. To improve fair-
ness, we also propose SRTF/Adaptive which controls re-
source usage of concurrently executing kernels to maximize
fairness. SRTF/Adaptive improves STP by 1.12x, ANTT
by 2.23x and Fairness by 2.95x compared to FIFO. Overall,
our implementation of SRTF achieves system throughput to
within 12.64% of Shortest Job First (SJF, an oracle optimal
scheduling policy), bridging 49% of the gap between FIFO
and SJF.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

PACT’14, August 24-27, 2014, Edmonton, AB, Canada.

ACM 978-1-4503-2809-8/14/08.

http://dx.doi.org/10.1145/2628071.2628117.

R. Govindarajan
Indian Institute of Science
Bangalore, India

govind@serc.iisc.in

Matthew J.
Thazhuthaveetil
Indian Institute of Science
Bangalore, India

mijt@serc.iisc.in

Categories and Subject Descriptors

D.3.3 [Programming Languages|: Language Constructs
and Features; C.1.2 [Processor Architectures]: Multiple
Data Stream Architectures (Multiprocessors)

1. INTRODUCTION

Concurrent kernel execution in Graphics Processing Units
(GPUs), such as the NVIDIA Fermi and Kepler families,
exploits task-level parallelism among independent GPU ker-
nels primarily by space-sharing. Each GPU kernel exclu-
sively occupies the resources (i.e. registers, thread contexts,
shared memory) it needs and concurrent execution is only
achieved if there are enough resources left over to accommo-
date any concurrent kernel. Therefore, NVIDIA positions
concurrent kernel execution as allowing “programs that ex-
ecute a number of small kernels to utilize the whole GPU”.

Programs whose kernels already utilize the whole GPU
(“large kernels”) — most kernels in Rodinia, Parboil2, etc. —
do not benefit from concurrent kernel execution and execute
serially. However, since every GPU kernel is organized as a
hierarchy, a grid of thread blocks and executes at thread
block granularity, recent works on concurrent GPU kernel
execution have been able to achieve concurrent execution
for large kernels. However, on current GPU hardware, con-
current kernels are executed in arrival order (i.e. FIFO).
We show that FIFO is a poor choice and that preemptive
scheduling policies such as those presented herein improve
throughput and turnaround time.

This work focuses on the Thread Block Scheduler (TBS),
the first-level hardware scheduler in GPUs. In particular, we
propose two thread block scheduling policies — Shortest Re-
maining Time First (SRTF) and SRTF/Adaptive — for con-
current GPGPU workloads. These policies use estimates of
kernel runtime to determine their scheduling decisions when
executing concurrent workloads, we propose a novel online
runtime predictor for GPU grids to provide these estimates
of runtime. Our predictor is based on an observation that
the GPU kernel execution time is approximated by a sim-
ple linear function of the durations of its thread blocks, and
therefore online profiling of the first few thread blocks suf-
fices to estimate the kernel execution time for scheduling.

2. STRUCTURAL RUNTIME PREDICTION

Our principle of Structural Prediction on which our online
predictor is based essentially views the execution of a grid’s
N thread blocks (all of which have the same code) as N
repeated executions of the same program. So profiling the

first few thread blocks of a grid lets us predict the behaviour
of the remaining thread blocks. In this work, the runtime of
a thread block is used to predict the runtime of the whole
kernel. We call this Structural Runtime Prediction.

Assuming that all thread blocks take the same time to
complete, our Staircase model approximates runtime using
the following equation for runtime T'= ([N/R])¢t (1) .

Here, N = B/Ngm where the original B thread blocks
are assumed to be evenly distributed across Ngs streaming
multiprocessors (SMs). The grid’s maximum residency, R,
can be determined at launch time. The value of ¢t can be
obtained by sampling, possibly as soon as a single thread
block finishes execution. However, for timely predictions,
the grid must execute more than R blocks per SM.

To evaluate the Staircase model, we instrumented major
kernels in the Parboil2 and the ERCBench suites to record
the start and end time of each thread block and the SM it
executed on and ran them on a Fermi-based NVIDIA Tesla
C2070, with a quad-core Intel Xeon W3550 CPU, 16GB
RAM and running Debian Linux 6.0 (64-bit) with CUDA
driver 295.41 and CUDA runtime 4.2.

Using these recorded end times, linear regression resulted
in normalized predictions between 0.99x to 1.11x of actual
runtime for ERCBench and 0.87x to 1.13x for Parboil2. This
strongly supports our hypothesis that GPU kernel runtime
is a linear function. For the Staircase model, predictions
normalized to actual runtime lie between 0.54x to 1.18x for
ERCBench and 0.39x to 1.49x for Parboil2. If we exclude
outliers, normalized predictions are between 0.66x and 1.18x
for ERCBench and 0.6x and 1.2x for Parboil2.

The major causes for inaccuracy for the Staircase model
are (i) non-Staircase model behaviour precipitated by the
the first R blocks each ending at different times leading to
staggering in the starting times of subsequent blocks; (ii) dif-
fering work per thread block because thread block durations
depended on wvalue of their inputs, e.g. render in RayTrace;
(iii) poor static load-balancing across SMs. Concurrent exe-
cution affected throughput due to changes in residencies and
hence changed ¢t and total runtime. Co-running kernels and
the exact resource split between them also affected ¢.

3. SCHEDULER AND POLICIES

The Simple Slicing (SS) runtime predictor is an online,
concurrent-kernel aware predictor based on Equation (1| that
tries to correct for systematic inaccuracies. Its prediction
of runtime is an estimate of how much time a kernel would
take to complete if it was running from now (i.e. the time
at which the prediction is made) to completion, under the
current conditions (¢, residency and co-runners).

Since t can change as the kernel executes, we split the ex-
ecution into multiple slices. Currently, each slice is demar-
cated by kernel launches and kernel endings. We assume
that ¢ is constant within a slice when predicting timings for
blocks in that slice. Finally, as each SM can vary in be-
haviour, our predictor predicts runtimes for each kernel on
a per-SM basis.

Pred_Cycles =Active_Kernel_Cycles+

(Total_Blocks — Done_Blocks) x t (2)
Resident_Blocks
Total_Blocks and Done_Blocks count the number of thread

blocks assigned to and completed on a SM respectively. The
actual runtime of a kernel so far, Active_Kernel_Cycles, is

Scheduler STP | ANTT | Fairness
FIFO 1.35 3.66 0.19
MPMax 1.37 2.15 0.36
SRTE 1.59 1.63 0.52
SRTF /ADAPTIVE 1.51 1.64 0.56
SJF 1.82 1.13 0.80

Table 1: Geomean STP, ANTT and Fairness for var-
ious scheduling policies. Note that ANTT is a lower-
is-better metric.

used to correct predictor drift. For ERCBench, the SS pre-
dictor is accurate to between 0.48x to 1.08x of actual runtime
after observing t for only one thread block.

We evaluate four policies: Shortest Remaining Time First
(SRTF) which executes a single kernel at a time pre-empting
the running kernel if newly arrived kernels are deemed to
finish faster (using a sampling run); SRTF/Adaptive which
statically shares resources between running kernels if it deems
SRTF unfair; Just-in-time MPMazx, a resource-allocation
policy; and FIFO based on the NVIDIA Fermi Thread Block
Scheduler. SRTF and SRTF/Adaptive use estimates of run-
time provided by the Simple Slicing predictor to guide their
scheduling decisions.

4. EVALUATION

The primary metrics evaluated are are system throughput
(STP), average normalized turnaround time (ANTT)and
the StrictF metric for fairness. StrictF is defined as the
ratio of minimum slowdown to maximum slowdown, with a
value of 1 indicating high fairness.

We use all possible 28 2-program workloads from the ER-
CBench suite running them on GPGPU-Sim simulator (3.2.0)
modified to support execution of concurrent kernels. A zero
sampling (ZS) experiment provides accurate runtimes to the
SRTF to evaluate sensitivity to predictor accuracy. The re-
sults are summarized in Table [I| with full discussion in [1].

SRTF is very tolerant of errors in the simple slicing pre-
dictor. Zero-sampling improves STP by only 3% to 1.64
and ANTT by 22% to 1.33, thus we find that the inability
to preempt running thread blocks is the major performance
limiter for GPU scheduling.

5. CONCLUSION

We presented a novel online runtime predictor for GPU
kernels that exploited the structure of kernel grids to ob-
tain runtime predictions by observing thread block dura-
tions. We used it to build a thread block scheduler with
runtime aware policies, SRTF and SRTF/Adaptive, that
were found superior to the other realizable policies in terms
of system throughput, turnaround time and fairness. Com-
pared to FIFO, SRTF improved STP by 1.18x and ANTT by
2.25x. SRTF also outperformed MPMax with improvements
of 1.16x in STP and 1.3x in ANTT. Our SRTF/Adaptive
policy achieved the highest fairness among all the realizable
policies, 2.95x better than FIFO. Finally, SRTF bridged 49%
of the gap between FIFO and SJF, approaching to within
12.64% of SJF’s throughput.

6. REFERENCES

[1] S. Pai, R. Govindarajan, and M. J. Thazhuthaveetil,
“Preemptive Thread Block Scheduling with Online

Structural Runtime Prediction for Concurrent GPGPU Ker-

nels,” in |CoRR abs/1406.6037, 2014.

http://arxiv.org/abs/1406.6037

	Introduction
	Structural Runtime Prediction
	Scheduler and Policies
	Evaluation
	Conclusion
	References

