Modeling Performance of Graph Programs on GPUs in a Compiler

Sreepathi Pai and Keshav Pingali
The University of Texas at Austin

Graph processing primitives like Breadth-First-Search (BFS), Single-Source Shortest Path (SSSP) and Minimum-
Spanning Tree (MST) are well-known examples of irregular data-parallel programs. These programs require extensive
use of memory indirection and data-dependent control flow, so it is impossible to ignore the values of inputs (as
opposed, to say, size) when building performance models for these programs. Currently, the only consensus about
the behaviour of these programs, after several characterization studies, is that memory bandwidth is not a bottleneck
since it is never fully utilized in these programs. However, no study has yielded a performance model. This lack of
a sound performance model has hindered efforts to improve compilers, runtimes and computer architecture for these
programs. In this work, we describe our motivation for building a sound performance model, our methodology, our
results and potential avenues for future exploration enabled by our infrastructure.

Our primary motivation stems from our experiences with the Galois GPU compiler. We built this compiler to
generate CUDA code for GPUs from high-level representations of graph algorithms. Using several automatic opti-
mizations tailored to GPU graph programs, our compiler produces code that meets or exceeds the performance of
8 well-known hand-optimized third-party implementations. However, automatically deciding which optimizations to
apply to graph programs proved exceedingly difficult. Some optimizations led to speedups on some inputs, but slowed
down on other inputs. The continuing rapid evolution of GPUs also exacerbated this problem as optimizations changed
in relevance with new generations of hardware.

To develop a clear understanding of overall performance, we created a model for graph programs that would
generalize well to other graph algorithms consuming a variety of inputs and running on various GPUs. We developed
a representation of graph programs called the Operator Machine that uses queuing network models to represent graph
programs. This representation splits any graph program into multiple stages, the majority of which are shared by all
graph programs. Amenable to both measurement and analysis, our characterization of the measured throughputs at
each of these shared stages led to several general insights.

We found that graph programs on GPUs suffer largely from high TLB miss rates and are therefore unable to
fully utilize memory bandwidth. Contradicting previous studies, we discovered that the large number of iterations in
iterative graph programs operating on high-diameter graphs is not a performance concern; instead the rate of iterations
in these programs overwhelms the CUDA runtime, leading to GPU under-utilization. The performance gains of
widely-used dynamic scheduling techniques, often prescribed to load-balance inputs with widely-varying degrees
(such as social networks), were found to be bottlenecked by barrier throughput. Additionally, the gains from these
techniques were linked to the graph algorithm rather than the type of graph. Finally, we were able to show that for
graph programs, no one set of optimizations suffices and hybrid implementations featuring multiple variants must be
generated by the compiler.

Since the number of variants is quite large, the compiler has to reason about the performance of each variant so
that it can generate the minimal number of variants necessary for a hybrid implementation as well as the code to
switch between them at runtime. While code generation influenced by data characteristics and driven by performance
models is not without precedent — SQL query optimizers come to mind — compilers have traditionally not incorporated
complex performance models such as the one we have proposed. For now, our compiler provides the only infras-
tructure to systematically probe the performance of graph programs on GPUs. As programs with input-dependent
behaviour become increasingly important workloads and hardware platforms become increasingly diverse, we believe
that compilers augmented with these kinds of performance models will become critical tools in order to exploit the
performance of these systems.



