
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

A Compiler for Throughput Optimization
of Graph Algorithms on GPUs

Sreepathi Pai Keshav Pingali
The University of Texas at Austin, USA

sreepai@ices.utexas.edu pingali@cs.utexas.edu

Abstract
Writing high-performance GPU implementations of graph
algorithms can be challenging. In this paper, we argue that
three optimizations called throughput optimizations are key
to high-performance for this application class. These opti-
mizations describe a large implementation space making it
unrealistic for programmers to implement them by hand.

To address this problem, we have implemented these op-
timizations in a compiler that produces CUDA code from
an intermediate-level program representation called IrGL.
Compared to state-of-the-art handwritten CUDA implemen-
tations of eight graph applications, code generated by the
IrGL compiler is up to 5.95x times faster (median 1.4x)
for five applications and never more than 30% slower for
the others. Throughput optimizations contribute an improve-
ment up to 4.16x (median 1.4x) to the performance of unop-
timized IrGL code.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.3.4
[Programming Languages]: Processors

Keywords Graph applications, amorphous data-parallelism,
GPUs, compilers, optimization, throughput

1. Introduction
There is growing interest in raising the abstraction level for
GPU programmers through the use of high-level program-
ming notations and compiler technology.

For dense array programs with affine loop nests for ex-
ample, Baskaran et al. have shown that polyhedral com-
pilation techniques can be used to generate high quality
CUDA code [6]. The PPCG compiler [59] implements this

approach for C programs annotated with directives. DSL
compilers can target PPCG’s PENCIL intermediate repre-
sentation [3, 4].

For data-parallel programs, directives-based program-
ming notations like OpenACC [43] and OpenMP [44] permit
standard compilers to be used to produce high quality GPU
code [32]. Venkat et al. [58] have implemented a compiler
to translate data-parallel sparse matrix-vector multiplication
(SpMVM) code to CUDA; their compiler also supports data
transformations between sparse matrix formats.

For graph algorithms on the other hand, the state of
the art of high-level notations and compilation technology
is much less advanced. Graph algorithms were first im-
plemented for the GPU by Vineet et al. [60]. NVIDIA’s
Fermi architecture, introduced in 2010, supported efficient
fine-grain synchronization for the first time, permitting ef-
ficient breadth-first search (BFS) [36] and single-source
shortest-path (SSSP) [18] programs to be written in CUDA.
Burtscher et al. implemented the LonestarGPU bench-
mark suite, which contains CUDA implementations of com-
plex irregular algorithms such as Delaunay mesh refine-
ment [10, 37, 38]. Since then, C++ template libraries have
been developed, such as Gunrock [61], VertexAPI [20],
MapGraph [23], TOTEM [24], and Falcon [14]. However,
high-performance graph algorithms are still written by hand
because existing frameworks cannot match the performance
of hand-written code. Furthermore, most frameworks sup-
port only vertex programs, a very restricted class of graph
algorithms.

In this paper, we argue that three optimizations, which we
call throughput optimizations, are key to high-performance
GPU implementations of graph algorithms. Of course not
all graph algorithms benefit from these optimizations, but
our study of handwritten CUDA/OpenCL implementations
shows that these optimizations are often not being used even
for algorithms that do benefit from them. One reason might
be that programmers are not aware of these optimizations or
may not be sure that these optimizations are useful for their
algorithm. Another reason is that these optimizations are
difficult to implement, so programmers may be reluctant to
make the effort to implement them if the pay-off is unclear.

Obviously, these problems go away if the optimizations can
be performed by a compiler while generating CUDA or
OpenCL from a high-level notation.

This paper makes the following contributions:

• We identify three throughput bottlenecks that may limit
the performance of GPU implementations of graph algo-
rithms, and describe three throughput optimizations for
circumventing these bottlenecks (Section 2).

• We show how these optimizations can be automated
within a compiler that translates intermediate-level de-
scriptions of graph algorithms to CUDA code. The
intermediate-level notation, called IrGL, is intended to
be the target language for front-ends for higher-level no-
tations for graph algorithms such as Green-Marl [29] or
GraphLab [33] (Sections 3, 4).

• We evaluate the performance of CUDA code produced by
the IrGL compiler for eight graph algorithms: Breadth-
First-Search (BFS), Single-Source Shortest Paths (SSSP),
Minimum-Spanning Tree (MST), Connected Compo-
nents (CC), Page Rank (PR), Triangle Counting (TRI),
Maximal Independent Set (MIS) and Delaunay Mesh Re-
finement (DMR) (Section 5).
IrGL speeds up implementations from 1.24x to 5.95x
compared to the fastest GPU codes available, which
mostly do not implement these optimizations, as men-
tioned above.

2. GPU Bottlenecks for Graph Algorithms
The simplest graph algorithms make multiple sweeps over a
graph. In each sweep, every node of the graph is visited and
an operator is applied to the node to update the labels of that
node and its neighbors. The Bellman-Ford algorithm for the
single-source shortest-path (SSSP) problem is an example;
in this algorithm, the operator is the well-known relaxation
operator [16]. These topology-driven algorithms [48] may
not be work-efficient because there is usually no work to do
at most nodes in a given sweep.

2.1 Data-driven Graph Algorithms
In contrast, data-driven algorithms maintain worklists of ac-
tive nodes in the graph where there is work to be done;
in each sweep, only the active nodes are processed, and
the worklist for the next sweep is populated. These algo-
rithms terminate when there are no active nodes in the graph.
We illustrate the key ideas of data-driven algorithms using
breadth-first search (BFS). Initially, the level of each node
is set to∞. The algorithm begins by setting the level of the
source node src to zero, and initializing the worklist for the
first sweep to contain the source node src. In each sweep,
nodes at level l are on the worklist, and their neighbors in
the graph are visited; if the label of a neighbor is∞, its label
is updated to l+1 and the node is placed on the worklist for
the next sweep. The algorithm terminates when the worklist
is empty because all nodes have been labeled .

101 102 103

Time per Kernel Invocation (¹s)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

G
P
U

 U
ti

liz
a
ti

o
n

M1, Quadro 6000, 352.30
M1, Quadro 6000, 352.55
M1, Tesla K40c, 352.30
M1, Tesla K40c, 352.55
M2, Quadro M4000, 352.55

Figure 1. GPU Utilization for a loop containing a fixed-
time kernel + cudaMemcpy that iterates 10000 times. Kernel
time, R, is varied from 10µs to 3000µs across runs, but is
fixed during the 10000 iterations. GPU Utilization is defined
as (R ∗ 10000)/T ime where Time is time taken to execute
the loop. Results are across two machines, three graphics
card generations, and two device driver versions.

Compared to topology-driven algorithms, data-driven
graph algorithms are more difficult to implement efficiently
both on CPUs and GPUs. Topology-driven algorithms can
be implemented by iterating over the representation of the
graph; in contrast, data-driven algorithms require worklists
to keep track of active nodes. Implementing worklists effi-
ciently is challenging: because the amount of computation
at each active node is relatively small, the overhead of work-
list manipulation cannot be amortized as it would be if tasks
were more coarse-grained.

In the rest of this section, we describe three performance
bottlenecks that must be overcome to match handwritten
program performance for data-driven graph algorithms. One
of these – kernel launch throughput – is identified for the
first time in this work.

2.2 Kernel Launch Throughput
Most graph algorithms are iterative and take the following
prototypical form:

1 whi le (cond) {
2 k e r n e l (. . .) ;
3 cond = check () ; / / t e r m i n a t i o n c o n d i t i o n
4 }

Usually, this loop is executed on the CPU and it performs
a kernel launch on each iteration to process the current set
of active nodes. The cond flag is computed on the GPU
and transferred from the GPU to the CPU, usually via a
cudaMemcpy1, to tell the CPU whether to execute more
iterations or not.

1 We only focus on NVIDIA GPUs and CUDA in this paper

SSSP Bellman–Ford Near–Far
Input NY USA NY USA
Iterations 813 5792 1893 49216
Avg. iteration time (µs) 88.17 9168.5 18.5 20
Time (unoptimized, ms) 123 53149 98.8 2536
Time (with DP, ms) 94 53600 92 2448
Time (with outlining, ms) 88.5 60954 41.7 1149

Table 1. Iteration outlining results for two variants of SSSP.
The variant/input combinations with low average iteration
times benefit (Bellman–Ford on NY and Near–Far on USA
and NY). Legend: DP=Dynamic Parallelism

This implementation runs into a serious performance bot-
tleneck. On all the NVIDIA GPUs we tested, we cannot
launch kernels fast enough to keep the GPU fully utilized.

To investigate this problem, we wrote a GPU utilization
microbenchmark that executes a kernel and a cudaMemcpy
(of 4 bytes) for 10000 iterations. The kernel takes a fixed
amount of time every iteration, and this time is varied be-
tween 10 µs and 3 ms. Figure 1 shows that if a kernel takes
10 µs or less per call, GPU utilization varies from 25% to
38% depending on the GPU. To achieve 95%–98% utiliza-
tion, a kernel must execute for at least 1000 µs.

This is a serious problem for work-efficient graph algo-
rithms because their kernels usually execute for less than
100 µs depending on the number of items in the worklist.
Since the size of the worklist is dynamic, strategies from
dense linear algebra, such as increasing the “block size” can-
not be mimicked to increase the work per iteration.

CUDA has a new feature, dynamic parallelism, that al-
lows launching kernels directly from the GPU without in-
volving the host CPU. The entire loop above would be exe-
cuted in a separate GPU kernel of its own without roundtrips
to the CPU. However, while dynamic parallelism avoids
the overheads of CPU roundtrips, the performance improve-
ments are not commensurate with the level of underutiliza-
tion observed.

Table 1 shows execution statistics for two SSSP algo-
rithms: Bellman-Ford and Near-Far [18]. Bellman-Ford is
a topology-driven algorithm, whereas Near-Far is a data-
driven algorithm. This makes a big difference in their work-
efficiency: for the USA road network, the time per iteration
of Bellman-Ford is more than 9000 µseconds compared to
20 µseconds for Near-Far.

From Figure 1, Near–Far’s GPU utilization will be about
50% with an expected gain of 2x at 100% utilization. This
gain is realized with our scheme, Iteration Outlining, de-
scribed later in Section 4.1, but not with Dynamic Paral-
lelism. Note that while our optimization benefits Bellman-
Ford on the small US road network for NY (average kernel
time 88.17 µs), it does not benefit the full US road network
since its time per iteration is more than 9000 µseconds and
the throughput of kernel launches is not a bottleneck.

1 _ _ d e v i c e _ _ push (w o r k l i s t , i t em) {
2 pos = atomicAdd (w o r k l i s t . t a i l , 1) ;
3 . . .
4 w o r k l i s t . i t e m s [pos] = i t em
5 }

Listing 1. Worklist push implemented using fine-grain syn-
chronization. Code to check overflow has been elided.

1 / / Loop 1
2 f o r (i = 0 ; i < N; i ++)
3 push (WL, a [i]) ;
4
5
6 / / Loop 2
7 f o r (i = 0 ; i < N; i ++)
8 i f (cond (i))
9 push (WL, a [i]) ;

Listing 2. Examples of CUDA kernel loops that push ele-
ments of an array a onto the worklist without aggregation

Ironically, the throughput limitation on kernel launches is
most harmful for work-efficient graph algorithms!

2.3 Fine-grained Synchronization Throughput
The next bottleneck arises from the need to maintain work-
lists of active nodes for data-driven algorithms.

Multiple threads may invoke a worklist’s push method
concurrently, so they must be synchronized properly. A
possible implementation of a concurrent push method us-
ing fine-grained synchronization is shown in Listing 1. The
use of CUDA’s atomicAdd allows us to avoid coarse-grain
locks, but it is the slowest kind of atomic on the GPU, ex-
ecuting at 1 per clock cycle [40]. If an item was added to
the worklist for each edge traversed, performance on the
NVIDIA Kepler would be capped at around 745M traversed
edges per second (TEPS). This can be an order of magnitude
lower than when atomics are not used. Worklist updates,
therefore, form the next prominent bottleneck for work-
efficient graph algorithms.

A general scheme to reduce the performance impact of
atomics is to aggregate pushes to reduce the number of
atomicAdds executed. Consider the first loop in Listing 2,
which is executed on a single thread. Assuming a function
agg_thread that aggregates pushes within a thread is avail-
able, the number of atomics for this loop can be reduced to 1
by the following code:

1 s t a r t = a g g _ t h r e a d (N) ;
2 f o r (i = 0 ; i < N; i ++)
3 do_push (s t a r t + i , a [i]) ;

Here, agg_thread uses a single atomic to reserve space in
the worklist for N items, while do_push directly writes to
the reserved location corresponding to the iteration, without
performing any atomics.

Using agg_thread requires that the number of pushes
can be determined before entering the loop. The second loop

in Listing 2 illustrates a case where this is not possible – the
push is conditionally executed. While agg_thread cannot
be used here, it is still possible to aggregate across threads,
specifically those in the same CUDA warp. A CUDA warp
consists of 32 threads that execute in lockstep and so the
agg_warp function below can use warp-voting functions to
determine which other threads in its warp will be executing
push. Then one active thread in the warp executes the single
atomic to reserve space for all the voters. Warp-aggregation
reduce the number of atomics by 31 in the best case. After
aggregation, the loop now looks like:

1 f o r (i = 0 ; i < N; i ++)
2 i f (cond (i)) {
3 s t a r t = agg_warp (1) ;
4 do_push (s t a r t , a [i]) ;
5 }

In fact, it is possible to aggregate pushes across all threads
in the same thread block. Such an agg_threadblock has
the potential to reduce the number of atomics to one per
thread block for each push.

However, because it involves intra-thread-block commu-
nication, agg_threadblock must contain a CUDA bar-
rier. Since CUDA barriers must be executed uncondition-
ally by all threads in the thread block for correct execution,
agg_threadblock cannot replace agg_warp in the exam-
ple above. However, it may be able to replace agg_thread
in the first loop if it can be determined that the agg_thread
will be unconditionally executed by every thread.

Since CUDA kernels can deadlock if barriers are used
incorrectly [9, 41], aggregation by hand is error-prone and
usually not performed by programmers. Ideally, program-
mers would like to only use push in their code. The com-
piler would then analyze this code and perform the aggre-
gation automatically. In Section 4.2, we describe the analy-
ses and transformations required to achieve this cooperative
conversion. In Section 3.4, we demonstrate how cooperative
conversion leads to 3.25x improvement in performance for a
loop similar to the first loop in Listing 2.

2.4 Graph Traversal Throughput
A common pattern in graph algorithms is a pair of nested
loops (Figure 2) in which the outer loop iterates over a set of
nodes, while the inner loop iterates over the edges connected
to a given node. In nearly all benchmarks, the two nested
loops are DOALL-style loops with no dependences between
iterations.

To execute such loops on the GPU, loop iterations must
be mapped to CUDA threads. Unless this is done carefully,
the throughput of loop iteration execution becomes a bottle-
neck. If iterations of the outer loop are assigned to threads,
all iterations of the inner loop for a given outer loop itera-
tion are performed on the same thread. This serialization can
become a performance bottleneck when traversing graphs
with highly-skewed degree distributions such as power-law
graphs.

A

A0 A1 A2

B

B0

C

C0 C1 C2 C3 C4

Worklist

f o r (node In w o r k l i s t)
f o r (edge In node . edges)

. . .

Figure 2. Graph traversal code. The outer for iterates over
the worklist, while the inner for iterates over the edges of a
node. Note that trip count for the inner for is different for
each node.

Policy BFS SSSP-NF Triangle
Serial 1.00 1.00 1.00

TB 0.25 0.33 0.46
Warp 0.86 1.42 1.52

Finegrained (FG) 0.64 0.72 0.87
TB+Warp 1.05 1.40 1.51
TB+FG 1.10 1.46 1.55
WP+FG 1.14 1.56 1.23

TB+Warp+FG 1.15 1.60 1.24

Table 2. Speedup relative to serial inner-loop execution
for different combinations of scheduling policies on the
RMAT22 input. Higher is better. Legend: TB=Thread Block.
The FG policy dynamically assigns inner-loop iterations to
consecutive threads (Section 4.3).

For regular programs, the two for loops can be coalesced
by the compiler, but here the inner loop is non-affine, so a
polyhedral compiler like PPCG [59] cannot coalesce these
loops. Instead, dynamic scheduling policies must be used.

A number of dynamic scheduling policies have been stud-
ied in previous work on BFS implementations on GPUs [36]
(which supersedes [28]). Iterations from the inner loop can
be distributed to all threads in the thread block (Thread
Block/TB), or only to warps (Warp) or may use a dynamic
proportion of the threads (Finegrained/FG). Usually, the de-
gree of the node (i.e. the trip count of the inner loop) is used
to dynamically decide which scheduler is actually used for
a particular outer loop iteration. High-degree nodes are usu-
ally handled by Thread Block, medium-degree by Warp and
low-degree by Finegrained. Applying these policies to other
applications, however, reveals that no single policy or fixed
combination of policies is beneficial for all applications.

Table 2 shows the performance of BFS, SSSP Near–Far
and PageRank. The results show that the best policy is differ-
ent for different programs. Since there are 8 different com-
binations of scheduling policies that are possible, a compiler
that can implement any of these combinations is required.
In Section 4.3, we describe how our compiler can generate
any combination of scheduling policies by using a common
abstraction for scheduling policies.

1 Kernel BFS (graph , LEVEL) {
2 ForAl l (wl idx In WL) {
3 n = WL. pop (wl idx)
4 edges = graph . nodes (n) . edges
5 ForAl l (e In edges) {
6 i f (e . d s t . l e v e l == INF) {
7 e . d s t . l e v e l = LEVEL ;
8 WL. push (e . d s t . i d) ;
9 } } } } }

10
11 { s r c . l e v e l = 0 ;
12 LEVEL=1;
13 I t e r a t e BFS (graph , LEVEL) I n i t i a l [s r c] {
14 LEVEL++;
15 }
16 }

Listing 3. Level-by-level BFS kernel in IrGL. The worklist
object (WL) is an implicit parameter.

2.5 Discussion
The three throughput limitations we have identified are
fundamental to the performance of data-driven graph al-
gorithms. The launch throughput limitation prevents the
GPU from being fully utilized. Worklist-using algorithms
are usually work-efficient, but the performance of atom-
ics on GPUs is so low that programmers may opt to use
topology-driven algorithms, which are not work-efficient.
Parallel graph traversal with multiple scheduling strategies
can improve performance across different algorithms.

These bottlenecks are orthogonal to each other, but there
are significant second-order performance effects from com-
bining them. Clearly, if launch throughput is not optimized,
any improvement that lowers kernel execution time below
1 ms under-utilizes the GPU and does not result in im-
provements in overall performance. Aggregating atomics
is important, but opportunities to do so are few in most
programmer-written code. By optimizing graph traversal,
we find more aggregation opportunities for cooperative con-
version. This means that the combinatorial space of valid
optimizations is quite large (> 64), making it infeasible for
manual exploration. A compiler-based approach is required
to generate these combinations automatically to select the
best performing implementation.

3. IrGL Compiler Overview
This section describes IrGL, the intermediate-level notation
used in this paper to express graph algorithms, and gives an
overview of how IrGL programs are compiled to CUDA.

3.1 Graph Algorithms and Worklists
Since high-performance graph algorithms are organized
around worklists, the performance of these algorithms can
depend critically on how well worklists are created and it-
erated over. To expose this to the compiler for optimization,
IrGL gives special treatment to worklists.

Listing 3 shows the IrGL code for data-driven BFS (ini-
tialization code is not shown). In the BFS kernel, the outer
ForAll iterates over valid indices in the worklist WL which
are used by WL.pop to obtain the actual nodes, and the inner
ForAll iterates over the outgoing edges connected to a given
worklist node n. As in other GPU notations, the ForAll con-
struct tells the compiler that the iterations of the loop can be
executed in parallel.

Invocations of the BFS kernel are performed by the It-
erate construct (line 13). This construct implicitly passes a
worklist to each kernel call; for the first call, a fresh work-
list is created by the Initial construct, while successive calls
are passed the worklist returned by the previous call. Kernel
invocations terminate when the worklist returned by the ker-
nel invocation is empty. Note that the dataflow of worklists
between kernel calls is specified implicitly in IrGL through
the Iterate construct.

3.2 IrGL Constructs
Table 3 shows a high-level summary of IrGL constructs. It
is convenient to divide them into kernel constructs, which
are used to write code that will be executed on the GPU, and
orchestration constructs, which setup and manage worklists
for the kernels. Coupled with a runtime library of parallel
data structures such as graphs and multisets, these constructs
allow a wide range of graph algorithms to be specified.

Orchestration constructs: IrGL provides a default work-
list to every kernel. A kernel may pop work off the worklist,
usually by iterating over it using ForAll, and it may push
values onto another worklist to enqueue work. IrGL work-
lists are bulk-synchronous so work items pushed during an
invocation cannot be popped in the same invocation.

Worklists are created and managed by Iterate and Pipe
constructs. Iterate repeats invocations until a worklist is
empty as shown in the BFS code in Listing 3. The Pipe
statement orchestrates the invocation of a pipeline of kernels
each of which produces a worklist for the next kernel. A Pipe
Once executes once whereas a Pipe loops until the worklist
is empty. Listing 4 illustrates the code for SSSP NearFar,
a ∆-stepping based SSSP algorithm for the GPU [18]. The
inner Pipe loops over the two Invoke calls, the first of which
is implicitly and automatically looped due to the Respawn in
the sssp_nf kernel.

We add Iterate and Pipe to IrGL for several reasons. First,
most graph algorithms are data-driven and use worklists to
keep track of work, so these constructs capture common pat-
terns of worklist manipulation. Second, Iterate and Pipe sig-
nificantly reduce the complexity of implementing the itera-
tion outliner optimization (Section 4.1).

Since the GPU memory is distinct from CPU memory,
the compiler and runtime transfer data between the CPU
and GPU as needed. Redundant transfers are avoided by
adapting the AMM runtime coherence scheme [46] and no
manual memory transfers are needed.

Construct Semantics
Kernel Constructs

ForAll (iterator) { stmts } Traverse iterator in parallel executing stmts
ReduceAndReturn (bool-expr) Reduce values of bool-expr and return as kernel return value. The actual reduction,

one of Any or All, is specified at kernel invocation.
Atomic (lock-expr) { locked-stmts }
[Else { failed-stmts }]

Acquire lock-expr and execute locked-stmts. If an Else block provided, execute failed-
stmts if lock-expr was not acquired. Implements divergence-free blocking locks [52].

Exclusive (object, elements) {
locked-stmts } [Else { failed-stmts
}]

Try once to acquire locks for elements in object and execute locked-stmts on succeed-
ing. On failure execute failed-stmts if provided otherwise execute next statement. One
thread is guaranteed to execute locked-stmts on conflicts.

SyncRunningThreads Compiler-supported safe implementation of GPU-wide global barriers [64]
Retry item (or Respawn item) Push item into a retry worklist and re-execute the kernel. Use of Retry indicates a run-

time conflict and triggers conflict management in the runtime (e.g. serial execution).
Orchestration Constructs

[Any | All (] Invoke kernel(args) [)] Invoke kernel, passing current worklists if kernel uses them.
Iterate [While | Until Any | All] ker-
nel(args) [Initial (init-iter-expr)]

Iteratively invoke kernel until termination condition is met or worklist is depleted.
If invoked standalone, establish fresh worklists using init-iter-expr for initialization,
else pass current worklists. Iterate can be emulated by a looped Invoke or Pipe and is
provided for convenience.

Pipe [Once] { stmts } Establish worklists to be used by stmts. Without Once, repeat stmts until worklists are
empty. Nested Pipes will not establish worklists.

Table 3. Summary of IrGL Statements, [] indicate optional parts, | indicates options. See [45] for syntax in ASDL.

1 Kernel s s s p _ n f (. . .) {
2 . . .
3 i f (d s t . d i s t a n c e <= d e l t a)
4 Respawn (d s t) / / near node
5 e l s e
6 WL. push (d s t) / / f a r node
7 . . .
8 }
9

10 / / e s t a b l i s h e s w o r k l i s t sh ar ed by
11 / / i n i t i a l i z e , s s s p _ n f and remove_dups
12 Pipe Once {
13 / / a l s o p l a c e s s r c i n t o t h e w o r k l i s t
14 Invoke i n i t i a l i z e (graph , s r c)
15
16 / / l o o p i n g Pipe
17 Pipe {
18 / / I n v o k e s s s p _ n f w i l l a u t o m a t i c a l l y loop
19 Invoke s s s p _ n f (graph , c u r d e l t a) ;
20 Invoke remove_dups () ;
21 c u r d e l t a += DELTA;
22 } }

Listing 4. SSSP Near–Far using Pipe

Kernel constructs: These are used to write code that will
execute on the GPU, and they are described briefly because
they are not the focus of this paper. Parallelism is exposed
through a top-level ForAll, which iterates over a worklist
(e.g., only nodes in the BFS frontier) or a data structure (e.g.,
all triangles in a mesh). ForAll loops can be nested. The com-
piler manages the assignment of ForAll iterations to CUDA
threads but this is not necessarily fixed at compile-time (Sec-
tion 4.3). We provide high-level synchronization constructs

Atomic, Exclusive and SyncRunningThreads because they
are particularly hard to get right [2, 52].

The computational core of a kernel, such as the condi-
tional update of a neighbor’s label in BFS, is written in
CUDA and is parsed in a limited fashion to obtain control
and data flow information. Since our compiler has full dis-
cretion on scheduling the iterations of ForAll loops, some
low-level features of CUDA such as shared memory are not
supported in their full generality and may not be used when
writing operator code. The only allowed use of GPU shared
memory in operator code is as a software-managed cache
(i.e. communication is not supported). Other CUDA fea-
tures not supported in IrGL programs include referencing the
indexing variables (e.g. threadIdx, blockIdx), the warp
shuffle and vote functions. While the operator code cannot
make use of these CUDA features, the underlying libraries
and the generated code make extensive use of them.

3.3 IrGL AST Compiler
The overall structure of our compiler is given in Figure 3.
The compiler operates on an AST of an IrGL program.
Our compiler parses this code for well-formedness and for
dataflow information, but is limited to C99 syntax. The com-
piler generates CUDA output, targeting NVIDIA GPUs from
Kepler onwards. Preliminary front-ends exist to generate
these ASTs from native C++ and Python programs. For lack
of space, we defer discussing details of lowering the IrGL
AST to CUDA to an associated technical report [45], since
this lowering is not the focus of this paper.

CUDA OpenACC PPCG+PENCIL OpenMP 4.0 FALCON Whippletree IrGL
[43] [59]+[3] [44] [14] [56]

Approach Language Directive Directive+IR Directive DSL Runtime IR
Constructs

ForAll N Y Y Y Y N Y
Atomic primitives primitives N Y (critical) non-blocking N Y

Exclusive N disallowed N Y (critical) Y (single) N Y
Worklists N N N N Y Y Y

Optimizations
Iteration Outlining N N N N N N Y

Cooperative Conversion N N N N N manual Y
Parallel Nested ForAll N N only affine loops Y unsupported dynamic tasks Y
Graph Traversal Time 13ms 13ms 13ms 63ms – 13ms 2ms

Table 4. Comparison of IrGL to other compiler-based GPU programming models. Execution times are for the graph traversal
benchmark shown in Listing 5 on the RMAT22 graph.

Kernel Optimizations

Orchestration Optimizations

IrGL

AST

Cooperative

Conversion

Nested

Parallelization

Iteration

Outliner

CUDA

Retry

Backoff

Figure 3. IrGL Compilation and Optimizations Overview.

3.4 Comparison with other GPU Notations
Since IrGL programs are parallel programs, some kernel
constructs obviously overlap with constructs in frameworks
such as OpenMP or OpenACC. The key differences are in
the orchestration constructs and in the throughput optimiza-
tions that our compiler performs.

Table 4 compares IrGL constructs with constructs in
other GPU notations. Whippletree [56] is an ingenious C++
template-based runtime that performs dynamic task schedul-
ing on the GPU and is a representative of high-performance
runtimes. The FALCON compiler [14] is not publicly avail-
able. OpenMP supports execution of nested parallel loops
but it was too slow and not used here.

Listing 5 shows a simple graph traversal microbenchmark
that we implemented in all of the frameworks for which we
had compilers available. Table 4 shows the running times on
these frameworks: the throughput optimizations we describe
in this paper enable the IrGL compiler to automatically im-
prove performance by 6.5× compared to existing frame-
works. Like others, the IrGL program starts out at 13ms bot-

1 f o r (n = 0 ; n < graph . nodes ; n ++) {
2 c s r _ e d g e _ b e g i n = graph . r o w _ s t a r t [n] ;
3 c s r _ e d g e _ e n d = graph . r o w _ s t a r t [n + 1] ;
4
5 f o r (e = c s r _ e d g e _ b e g i n ; e < c s r _ e d g e _ e n d ; e ++) {
6 pos = atomicAdd (w o r k l i s t . t a i l , 1) ;
7 w o r k l i s t . d a t a [pos] = graph . e d g e _ d s t [e] ;
8 }
9 }

Listing 5. Graph Traversal Microbenchmark. The graph is
stored in compressed sparse row (CSR) representation. All
iterations of both for loops are independent but note that the
inner for loop is not affine. Its iteration count is the degree
of the node being traversed.

tlenecked by atomics, it improves to 4ms after Cooperative
Conversion (Section 4.2) and to 2ms after removing exces-
sive serialization (Section 4.3).

4. IrGL Optimizations
This section describes the three key throughput optimiza-
tions: iteration outlining to overcome the kernel launch bot-
tleneck (Section 4.1), cooperative conversion to overcome
the atomic execution bottleneck (Section 4.2), and paral-
lel execution of nested ForAll loops to overcome the graph
traversal bottleneck (Section 4.3).

4.1 Iteration Outlining
The primary bottleneck for iterative graph algorithms is the
limited rate of kernel launches. Any other optimization that
speeds up a GPU kernel will either appear to have no effect
(being masked by this limit) or will cause the program to run
into this limit. Therefore, we must first tackle this bottleneck
to improve the performance of graph algorithms.

Iteration outlining is the program optimization for ad-
dressing this problem. The basic idea involves moving the
iterative loop from the CPU to the GPU. We first decide ap-
plicability of this optimization. Conveniently, the iterative
nature of these algorithms is captured well by Pipe and It-

Pipe Once

Iterate Any

Pipe

Iterate All

Figure 4. Example Outline Tree used to determine applica-
bility and scope of iteration outlining

1 _ _ g l o b a l _ _ BFS (graph , l e v e l , w o r k l i s t) { . . . }
2 / / CPU
3 whi le (w o r k l i s t . n i t e m s ()) { Ê
4 BFS< < <.. . > > >(graph , w o r k l i s t) ; Ë
5 l e v e l ++;
6 . . . / / w o r k l i s t management e l i d e d
7 }

Listing 6. CUDA code for BFS (Listing 3) without iteration
outlining. Ê is a cudaMemcpy and Ë is a repeated kernel
launch.

erate statements. Not all Pipe and Iterate statements can be
outlined. Apart from invoking IrGL kernels, Iterate or Pipe
can contain arbitrary code (e.g. Line 14 in Listing 3). If this
arbitrary code involves calls to library code (e.g. I/O code)
which cannot be executed on the GPU or reads/writes CPU
memory via pointers, it cannot be outlined.

To maximize the opportunity for outlining, the IrGL com-
piler constructs a tree starting from each outermost Pipe and
Iterate statement that it encounters. The nodes of the tree
correspond to Pipe and Iterate nested within that root Pipe,
and their depth in this tree corresponds to the depth at which
they are nested in the original program. Figure 4 is an exam-
ple tree resulting from this analysis.

A Pipe or Iterate node in this tree can be outlined if
it meets two conditions: (i) it contains no arbitrary code
that prevents outlining, and (ii) all of its children can be
outlined. Assuming that all nodes in the tree of Figure 4
can be outlined, the compiler can outline the root Pipe Once
resulting in one outline or it can outline the nested nodes
separately resulting in up to three outlines. On the other
hand, if say, the nested Pipe node could not be outlined, then
only Iterate Any and Iterate All nodes can be outlined.

The choice of which node to outline is left to an autotuner.
Indeed, the determination of which node should be outlined
for best performance cannot be done statically without ad-
ditional information. Once a node has been identified, the
remaining transformations are straightforward.

Using the code of BFS in Listing 3 as an example for
the optimization, we begin by noting that there is only one
Iterate statement. Listing 6 and 7 show the CUDA code
generated by the IrGL compiler without outlining and after
outlining the Iterate statement respectively. The following
steps implement the transformations required to outline a
selected Pipe or Iterate:

1 _ _ d e v i c e _ _ BFS (graph , l e v e l , w o r k l i s t) { . . . } Ê
2
3 _ _ g l o b a l _ _ BFS_con t ro l (graph , g l e v e l , w o r k l i s t) Ë
4 {
5 l e v e l = ∗ g l e v e l ;
6 whi le (w o r k l i s t . n i t e m s ()) { Ì
7 BFS (graph , l e v e l , w o r k l i s t) ; Í
8 SyncRunningThreads () ; Î
9 l e v e l ++

10 . . .
11 }
12 ∗ g l e v e l = l e v e l ;
13 }
14
15 / / CPU
16 cudaMemcpy (g p u _ l e v e l , l e v e l , . . .) ;
17 BFS_cont ro l < < < . . . > > > (. . .) ; Ï
18 cudaMemcpy (l e v e l , g p u _ l e v e l , . . .) ;

Listing 7. CUDA code for BFS with iteration outlining.
Ê is the device kernel, Ë is the outlined control kernel,
Ì is now an ordinary memory read, Í is now an ordinary
function call, Î is required to prevent race conditions, Ï is
a single launch from the CPU.

• In the first step, the compiler “outlines” the selected Iter-
ate or Pipe statement entirely to a separate control kernel
on the GPU (Listing 7: Ë and Ì). This allows it to elim-
inate memory copies of the condition variables since the
control kernel and the iterated kernels are in the same ad-
dress space.

• In the second step, the compiler generates GPU-callable
functions for all kernels invoked from the Pipe construct
(i.e. CUDA __device__ functions) (Listing 7, Ê). The
control kernel calls these device functions directly as
ordinary functions (Í). To maintain launch semantics,
each of these function calls is followed by a GPU-wide
barrier (Î).

• In the final step, the compiler replaces the CPU-side loop
with a call to the control kernel (Ï) and code to copy
local variables to the GPU and back.

After the outlining, all launches have been eliminated
by converting them into function calls thus overcoming the
launch throughput limitation and fully utilizing the GPU.

4.2 Cooperative Conversion
Our second compiler optimization, cooperative conversion,
reduces the number of atomics by aggregating functions that
use atomics. Recall that this involves replacing a function
like push used in the code with its aggregate equivalent.
This equivalent may perform aggregation at the thread or
warp or thread-block level. To perform thread-block-level
aggregation, the compiler must analyze the code to identify
points in the code where barriers may be safely placed.

4.2.1 Aggregation
To build a general compiler aggregation optimization that
works with many data structures, our compiler is agnostic

1 c l a s s WL {
2 / / d e f a u l t s i n g l e −t h r e a d method
3 void push (T i t em) ;
4
5 / / t h e s e t u p methods ’ r e t u r n v a l u e i s used
6 / / as t h e ‘ ‘ s t a r t ’ ’ parame te r t o do_push
7 @thread (push)
8 i n t a g g _ t h r e a d _ p u s h (i n t i t e m s) ;
9

10 @warp (push)
11 i n t agg_warp_push (i n t i t e m s) ;
12
13 @threadb lock (push)
14 i n t agg_ tb_push (i n t i t e m s) ;
15
16 @task (push)
17 void do_push (i n t s t a r t , i n t t a s k i d , T i t em) ;
18 } ;

Listing 8. Cooperative method annotations for WL.push()

to the actual aggregation mechanism used by functions like
agg_thread.2 Instead, functions that can be aggregated and
their aggregate equivalents are identified by annotations in
the data-structure library. Note that these annotations are
completely transparent to the IrGL programmer.

Listing 8 illustrates the annotations for the push()
method of a WL (worklist) class. The WL.push() method
is identical to push method described earlier and uses fine-
grained atomics. The @thread, @warp and @threadblock
annotations identify the aggregation functions correspond-
ing to the three levels of aggregation supported by our com-
piler: thread, warp and thread block. The @task annotation
identifies do_push as the function that replaces the push
after aggregation. This function is the same regardless of the
level of aggregation.

All aggregation functions take an argument identifying
the count of items aggregated and return a start value
passed to the task function. The task function takes two addi-
tional arguments compared to the function it is replacing: the
start value from the aggregation function and taskid in-
dicating the index of the aggregated task. For example, if N
was passed to the aggregation function, then taskid would
take on values from 0 to N − 1.

Now, to perform thread-level aggregation, we only need
to check that the loop has fixed trip count and that the loop
cannot exit early. The corresponding @thread function is
inserted into the code before the loop and the @task replaces
the original function:

1 s t a r t = @thread ((END − START) / STEP) ;
2 f o r (i = START ; i < END; i +=STEP) {
3 / / o r i g i n a l l y : wl . push (x)
4 @task (s t a r t , i − START , x) ;
5 }

2 The aggregation mechanism is nearly always the prefix-scan primi-
tive [53]. See [19, 36] for implementations.

Warp-level aggregation is simpler in that it can be per-
formed unconditionally. The original function is replaced by
an invocation to @warp and @task functions respectively.

At this point, we can consider “upgrading” a @thread ag-
gregation function to its @warp or to @threadblock equiva-
lent. The conversion to a @warp equivalent is unconditional,
but conversion to @threadblock is not so straightforward.

Since a @threadblock function is assumed to contain
barriers, it must be unconditionally executed by every thread
in the thread block. Therefore, it must be placed at a point
that is always executed by each thread. Since all threads in
the scope of the barrier must pass simultaneously through
such a point, we term these points focal points, an allusion
to the optical focus through which all rays of light pass. The
@threadblock aggregation function may then be placed at
any such focal point, provided the placement preserves any
data and control dependences of the original @thread or
@warp function. We present a simple analysis in next section
to identify such points.

4.2.2 Focal Point Analysis
Focal points are nodes in a program’s control flow graph
(CFG) that are guaranteed to be visited by every thread. It
is always correct to place a barrier or a method containing a
barrier at these points. For example, the dominators3 of the
EXIT node in a CFG are all focal points. However, this set
is usually too small to allow cooperative conversion.

The set of focal points can be enlarged by using the notion
of a uniform branch. A branch is a CFG node with more
than one outgoing edge. A uniform branch is one that is
decided the same way by all threads in scope of the barrier
that reach that branch; otherwise, the branch is said to be
non-uniform4. If the branch is a If or a While statement,
for example, all threads in scope of the barrier decide the
condition the same way – they all take the true branch or all
take the false branch. If it is a For loop, then all threads in
scope have the same trip count.

Uniform branches may be identified by static analysis [5,
15, 31], annotation or by construction. In this work, we
construct uniform branches when generating code. For ex-
ample, uniform ForAll loops can be generated by chang-
ing the loop trip count and introducing guards. Uniform-by-
construction allows us to sidestep some limitations of static
analysis wherein the use of thread IDs in the initialization of
our loops (e.g. the compiled outer ForAll loop) would pre-
vent them from being recognized as uniform branches.

Now, a barrier must be control-dependent on a uniform
branch to be placed correctly, and it can be placed on ei-
ther side of such a branch. However, uniformity is a local
property of a branch. In particular, it is possible in a nested
If-Then-Else for the predicate of the outer conditional to be

3 If every path from ENTRY to a node N in the CFG passes through a
node D, then D dominates N .
4 It is helpful to note that CUDA and IrGL are SPMD programming models.

Entry (u)

0 (u) Start Exit

1

4 2

3

Figure 5. Control Dependence Graph (CDG) of the CFG in
Figure 6(a). Nodes marked “(u)” are uniform branches.

non-uniform and for the predicate of the inner conditional
to be uniform; in that case, not every thread will execute the
inner conditional, but threads that do will either all take the
true branch or all take the false branch. Similarly, it is pos-
sible for a For loop to be uniform even if there is an early
exit out of the loop that is taken by some threads but not
others. Therefore, placing a barrier under a uniform branch
is not sufficient; all branches (if any) leading up to the bar-
rier must be uniform too. Thus, a focal point in the CFG is
a node that is iteratively control-dependent only on uniform
branches, other than possibly itself.

The set of focal points in a CFG can be determined by
examining its Control Dependence Graph (CDG) [22, 47].
Figure 5 shows the control dependence graph (CDG) of the
CFG in Figure 6(a). Given that node 0 is a uniform branch
and that nodes {1,2} are non-uniform, it can be seen that the
set of focal points is {Start,0,1,Exit}. Nodes {2,3,4}
are not focal points since they iteratively depend on non-
uniform node 1. By enlarging the set of uniform branches to
{0,1} corresponding to the CFG in Figure 6(b), the set of
focal points is the set {START,0,1,2,4,EXIT}.

To illustrate both the analysis and transformations de-
scribed so far, let us consider aggregating the WL.push in
BFS of Listing 3 to its thread block version. There are
two complications: the WL.push is definitely under a non-
uniform if conditional and the iteration over edges is also
non-uniform. As a result, initially, the only uniform branch
is the outermost ForAll. Figure 6(a) shows the only focal
points available. The WL.agg_tb_push cannot be placed
on these focal points since it would violate data depen-
dences. Therefore, we transform the inner ForAll to be uni-
form. This provides additional focal points within the inner
ForAll loop (Figure 6(b)) that can now be leveraged to com-
plete the transformation of WL.push. Listing 9 is the final
result. Highlighted are: Ê inner loop with a uniform loop

0: for(node)
{0, 1, Start}

1: for(edges)
{0, 1, Start}

Exit
{0, 1, Exit, Start}

2: if
{0, 1, 2, Start}

3: WL.push
{0, 1, 2, 3, Start}

4: endif
{0, 1, 2, 4, Start}

Start
{Start}

(a) Before

0: for(node)
{0, 1, 2, 4, Start}

1: for(edges)
{0, 1, 2, 4, Start}

Exit
{0, 1, 2, 4, Exit, Start}

2: if
{0, 1, 2, 4, Start}

3: WL.push
{0, 1, 2, 3, 4, Start}

4: endif
{0, 1, 2, 4, Start}

Start
{Start}

(b) After

Figure 6. Results of Focal Point Analysis before and af-
ter the inner loop is made uniform. Rounded boxes in-
dicate uniform nodes. Highlighted nodes are focal points.
Thread-block-level aggregation can be placed on the thick-
ened edges. Differences from dominator analysis are itali-
cized.

trip count, Ë guard to restrict execution to original loop iter-
ations, Ì capturing a valid push by the current thread, Í un-
conditional execution of WL.agg_tb_push by all threads in
the thread block, Î the actual aggregated push executed con-
ditionally.

Of these, Ê, the conversion of the inner loop to a uniform
loop needs further explanation. To make the inner loop uni-
form, one correct but terribly inefficient method (that we do
not use) is to set the trip count of the inner loop to the max-
imum trip count among all the threads in the same thread
block. The determination of this value can take place before
the inner ForAll loop. In our actual system, however, we re-
place the inner loop by the scheduling loops generated by the
nested parallelism optimization described in the next section
which are guaranteed to be uniform by construction.

4.3 Parallel Execution of Nested ForAll loops
Our compiler generates code to perform dynamic scheduling
for parallel execution of the iterations of nested ForAll loops.
Broadly, this is inspector–executor execution of irregular
parallel loops. But as shown in Table 2, no single policy for
executors is optimal for all programs or inputs. There is also
no fixed combination of scheduling policies that is optimal.
Therefore, to be truly useful, our compiler must be able to
generate any combination of scheduling policies. We now
describe how our compiler can generate any combination of
schedulers.

1 f o r (node i n w o r k l i s t) {
2 f o r (e i n node . edges) { / / u n i f o r m Ê
3 bool v a l i d _ p u s h = f a l s e ;
4 i n t t o _ p u s h ;
5 i n t s t a r t ;
6
7 i f (v a l i d _ i t e r a t i o n ()) { Ë
8 i f (e . d s t . l e v e l == UNVISITED) {
9 e . d s t . l e v e l = LEVEL ;

10
11 v a l i d _ p u s h = t rue ; Ì
12 t o _ p u s h = e . d s t ;
13 } }
14 s t a r t = WL. agg_ tb_push (v a l i d _ p u s h) ; Í
15 i f (v a l i d _ p u s h)
16 wl . do_push (s t a r t , 0 , t o _ p u s h) ; Î
17 } }

Listing 9. Cooperative conversion of the BFS operator code
to use the thread block aggregate for WL.push

Policy Iterations
Executed By

Pref. Loop Size

Serial Single thread >= 0
Threadblock All threads in

thread block
>= TBSIZE

Warp [28, 36] All threads in
a warp

>= 32

Finegrained [36] Consecutive
threads in
thread block

>= 0

Table 5. Scheduling policies for distributing inner loop it-
erations to threads. TBSIZE is size of the CUDA thread-
block (usually 256).

4.3.1 Background on Scheduling Policies
Table 5 describes the basic scheduling policies known to our
compiler. Serial, Threadblock and Warp are straightforward
policies, where a fixed number of threads are assigned to
execute iterations of the inner loop in parallel. The Serial
policy serializes the inner loop but executes the outer loop in
parallel. The Threadblock policy parallelizes the inner loop
but serializes the outer loop. The Warp policy assigns outer
loop iterations to CUDA warps. Each warp parallelizes inner
loop iterations across its 32 threads while serializing the
outer loop iterations assigned to it. However, warps execute
in parallel, so outer loop iterations assigned to different
warps execute in parallel.

Assigning a fixed number of threads to execute inner loop
iterations (as in Warp and Threadblock) leads to underuti-
lization of threads for irregular (or low trip count) inner
loops. The Finegrained policy, therefore, assigns consecu-
tive inner loop iterations to consecutive threads of a thread
block. After all inner loop iterations have been assigned, the
scheduler switches to assigning iterations from a different
parallel outer loop iteration to the unused threads. Thus, it

can reduce underutilization with parallel execution of both
inner and outer loops.

4.3.2 Combining Schedulers
While each of the policies described in the previous section
can be used individually, it is better to combine them and
assign each policy a partition of inner loops. This partition-
ing can take a scheduler’s preferred loop size (Table 5) into
account. In a Threadblock+Warp+Finegrained combination,
for example, all inner loops with trip count of TBSIZE or
more are executed by Threadblock. Then, loops of size> 32
are executed by the Warp policy with the Finegrained pol-
icy finally executing any remaining inner loop iterations. Of
course, if the Finegrained policy was absent in this combi-
nation, the Warp policy would execute all iterations not as-
signed to Threadblock ignoring its preferred loop size.

To generate code for a given combination of scheduling
policies, our compiler begins by arranging the user-selected
basic policies in descending order of their preferred loop
sizes. Schedulers for each scheduling policy are then emitted
in this order. Listing 10 shows the generic template for
combining schedulers. A scheduler is omitted if the policy
it implements was not selected as part of the combination.

In Listing 10, Scheduler initialization code contains, for
example, the calculation for assignment of inner loop it-
erations to threads for the Finegrained scheduler. Next, if
the inner loop iterations contain (read-only) references to
outer loop variables, the compiler computes the closure and
generates code (Closure-saving code) to save these data
values to CUDA shared memory. If our compiler is un-
able to parse operator code, annotations for read/write sets
can be supplied to assist the closure computation. Sched-
ulers for each selected policy follow, separated by a CUDA
__syncthreads(), since they read and write from the same
locations in CUDA shared memory.

Each individual scheduler (Listing 11) is a uniform and
regular loop that distributes inner loop iterations to threads.
First, the threads allocated to a scheduler instance identify
which outer loop iteration to execute. For Threadblock and
Warp, this is one outer loop iteration from the partitions as-
signed to them. Identification uses communication between
the threads. Finegrained, on the other hand, reads from the
calculated assignment.

Note that both the outer ForAll loop and the while(true)
loop of the scheduler are uniform. Replacing the non-
uniform inner irregular ForAll loop with these uniform
scheduler loops allows promotion of @thread- and @warp-
level to @threadblock-level aggregation. This aggregate
function is executed before any scheduler and reserves space
in the worklist for all inner loop iterations. The resulting
start values are essentially references to outer loop vari-
ables and are treated similarly.

An IrGL programmer is therefore able to use our compiler
to quickly and automatically evaluate all combinations of
traversal strategies for a graph algorithm. Performance can

1 f o r (wl idx = t i d ; . . .) { / / u n i f o r m
2 node = WL. pop (wl idx) ;
3
4 Scheduler initialization code
5 Closure-saving code
6 _ _ s y n c t h r e a d s () ;
7
8 Threadblock scheduler code
9 _ _ s y n c t h r e a d s () ;

10
11 Warp scheduler code
12 _ _ s y n c t h r e a d s () ;
13
14 Finegrained scheduler code
15 _ _ s y n c t h r e a d s () ;
16 }

Listing 10. Generic CUDA template for inner loop paral-
lelization using a combination of schedulers

1 whi le (t rue) {
2 identify node(s) to work on / / I n s p e c t o r
3 _ _ s y n c t h r e a d s () ; / / n o t needed f o r Warp
4 i f (no work was available)
5 break ;
6
7 / / E x e c u t o r
8 restore inner loop closure for selected nodes
9

10 execute inner loop in parallel
11 _ _ s y n c t h r e a d s () ;
12 }

Listing 11. Generic CUDA scheduler template

benefit in two ways: i) by a faster traversal strategy, and ii)
by exposing more opportunities for cooperative conversion.

4.4 Other Minor Optimizations
Our compiler also extends some well-known optimizations
to IrGL constructs. In particular, our compiler can unroll
Pipe constructs. This often triggers the NVIDIA CUDA
compiler to perform inlining in the control kernels used in
iteration outlining.

Our runtime library’s implementations of data structures
such as Graphs and Worklists contain variants that use the
CUDA texture unit. A programmer can explore these data
structure variants simply through a compiler switch.

For programs that use mutual exclusion constructs and
worklists, we also provide the Retry Backoff optimization
described next.

Retry Backoff The Retry statement populates a retry work-
list, often as a result of failed Atomic or Exclusive. This
worklist therefore exhibits conflict locality, items close to
each other in this worklist have a higher probability of con-
flicts. To reduce conflicts, therefore, we assign consecutive
items in the retry worklist to the same thread. By distributing
items in the worklist in this blocked fashion to threads, we
can reduce the number of retries needed. Once the number
of workitems in the retry list falls below a certain number,

Road networks
NY (264K, 730K), FLA (1.07M, 5.4M),
CAL (1.8M, 4M), USA (23M, 57M)

RMAT-style [11]
rmat16 (66K, 504K), rmat20 (1M, 8M),
rmat22 (4M, 33M)

Other graphs
2d-2e20/2D grid (1M, 4M), r4-2e23/Uniformly
random (8M, 33M)

Meshes
25k, 250K, 1M and 5M point meshes

Table 6. Input classes and constituent graphs used in the
evaluation. Numbers in parentheses indicate number of
nodes and edges respectively.

they are processed sequentially. Currently, Retry Backoff is
only applied to DMR which significantly benefits from it.

5. Evaluation
We compared the performance of IrGL-generated code5 that
of publicly available, best-of-the-breed CUDA implementa-
tions of eight algorithms (Table 7). We also compared with
Gunrock [62], a state-of-the-art GPU-based graph analytics
framework.

We used a Kepler-based Tesla K40c6 for the evaluation,
using NVCC 7.5 to compile the generated CUDA code ex-
cept for MST where we use NVCC 6.0 due to a bug in how
the NVCC 7.5 compiler compiles Atomic. We also partially
disable warp aggregation in SSSP because it also triggers
a bug in all CUDA compilers we tested. We used three ma-
jor classes of inputs: road networks, RMAT-style graphs, and
grids and random graphs (Table 6). All programs were timed
from start to finish, but the times exclude I/O and the initial
and final copies of the graph to and from the GPU. Thus, the
time to setup runtime objects such as worklists is included.

By choosing different optimizations, our compiler can
generate many variants from the same source code. The
choice of optimizations can be different for different input
classes even for the same benchmark. To keep the compar-
ison fair, for each benchmark, we use a single binary com-
piled with one set of optimizations for all inputs.

5.1 Overall Results
Five of the eight IrGL-generated programs – MIS, MST,
PR (except road networks), SSSP, and TRI – are faster than
the third-party implementations on average (Figure 7), with
improvements ranging from 1.24x to 5.95x (median 1.4x).
DMR performance matches that of the hand-written bench-
mark. Only IrGL BFS, CC and PR (road) are slower than the
handwritten benchmarks.

Merrill et al. [36]’s BFS is highly optimized – it imple-
ments all the optimizations discussed in this paper by hand
and benefits from the use of customized data structures. PR
5 We plan to release these as part of LonestarGPU 3.0
6 Results on a Maxwell-based Quadro M4000 are in the Appendix

Benchmark Evaluated Fastest CUDA code Performance (ms)
BFS – Breadth-First-Search TOTEM [24], Medusa [69], Fal-

con [14], LonestarGPU 2.0 [1],
Gunrock [61]

Merrill et al. [36] (bfs-hybrid) 102 19

CC – Connected Components TOTEM, Gunrock Soman et al. [55] 179 186
DMR – Delaunay Mesh Refinement Falcon LonestarGPU 2.0 [1] r5M: 8448
MIS – Maximal Independent Set [34] NVIDIA CUSP [57] Che et al. [12] 125 140
MST – Minimum Spanning Tree (Boruvka) Gunrock, LonestarGPU 2.0 da Silva Sousa et al. [17] 2526 35303
PR – Page Rank TOTEM Elsen and Vaidyanathan [20] 1065 1400
SSSP – Single Source Shortest Path LonestarGPU 2.0, Gunrock Near–Far (Davidson et al. [18]) 7297 491
TRI – Triangle Counting - Polak [49] 474 809

Table 7. Baselines for our performance comparison. Performance numbers indicate execution time in milliseconds for the
largest road (USA) and RMAT (rmat22) graph respectively. Falcon source code was not made available so we have used
timings published by the authors [13]. Gunrock MST is faster, but does not work on RMAT graphs. It is compared separately
in Section 5.3.

bfs cc dmr mis mst pr sssp triangles
Benchmark

0

1

2

3

4

5

6

G
e
o
m

e
a
n
 S

p
e
e
d
u
p

input_category

mesh
other
rmat
road

Figure 7. Speedup over hand-optimized code (geometric
mean). Higher is better.

is 7% slower on road networks because the baseline uses a
parallel reduction on edges to accumulate PageRank values
while we use atomicAdd. These are very expensive for road
networks, conflicting 12×more compared to RMAT graphs.

Most handwritten implementations do not implement all
the optimizations we have identified, even if they are appli-
cable. We ascribe this to the difficulty of finding the right
combination of optimizations that will provide a speedup
and the large programming effort involved for a systematic
search. Our compiler allows programmers to quickly and au-
tomatically find the set of optimizations that will benefit their
algorithms.

5.2 Benefit of Optimizations
Figure 8 shows that the majority of algorithms benefit from
our optimizations. Our optimizations improve the perfor-
mance of BFS by 4.16× for road networks, with a mini-
mum of 1.15× for PR on RMAT-style graphs. The median
improvement is 1.4×. For MST (road), our optimizations re-
sult in slowdowns while not affecting the other classes. We
also find speedups due to the same optimizations vary sig-
nificantly across input classes.

bfs cc dmr mis mst pr sssp triangles
Benchmark

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

G
e
o
m

e
a
n
 S

p
e
e
d
u
p
 o

v
e
r

U
n
o
p
ti

m
iz

e
d
 I
rG

L

input_category

mesh
other
rmat
road

Figure 8. Speedup due to IrGL optimizations

Figure 9 shows the contributions of each optimization
in the benchmarks that had all three optimizations enabled.
Connected Components does not benefit from most opti-
mizations, but its slowdowns vary by class of graph. In
SSSP, exploiting nested parallelism (np) significantly ben-
efits RMAT-style graphs but negatively affects processing of
road graphs which prefer Iteration Outlining (iter). Lest this
be attributed solely to the high-diameter of road networks
and the consequent high number of kernel calls, we point out
that PageRank on RMAT-style graphs benefits from Iteration
Outlining despite having a low number of kernel calls. It is
the rate of kernel invocations that matters, not their number.
Figure 9 shows that the optimizations interact in complex
and unpredictable ways; having a compiler like IrGL is es-
sential for exploring these interactions.

These results strongly motivate hybrid implementations
– cases where it may be profitable to generate multiple
versions of the same algorithm with different optimizations
applied. Having a compiler like IrGL is essential for this.

5.3 Comparison to Gunrock
Gunrock [61] is a C++ template-based library for graph
analytics. Gunrock programs operate on frontiers of nodes

cc/
other

cc/
rm

at

cc/
road

pr/r
mat

pr/r
oad

sss
p/other

sss
p/rm

at

sss
p/ro

ad
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
if
fe

re
n
ce

 i
n
 S

p
e
e
d
u
p
 o

v
e
r

U
n
o
p
ti

m
iz

e
d

cc

np

iter

cc+np

cc+iter

np+iter

cc+np+iter

Figure 9. Difference in speedup for all combinations of op-
timizations. Legend: cc: cooperative conversion, np: nested
parallelism, iter: iteration outlining

bfs bfs/do cc mst sssp
Benchmark

0

2

4

6

8

10

12

14

16

Ir
G

L
G

e
o
m

e
a
n
 S

p
e
e
d
u
p
 o

v
e
r

G
u
n
R

o
ck

input_category

other
rmat
road

Figure 10. IrGL speedup over Gunrock. Higher is better.

or edges. A filtering operation removes inactive nodes or
edges from this frontier after which user-defined functors are
applied to frontier in parallel. This restricted programming
model is sufficient for graph analytics, but makes it difficult
to express programs like DMR.

Figure 10 compares the performance of programs Gun-
rock 0.3 to that of IrGL code. Four of our benchmarks
are common, and Gunrock provides two implementations
of BFS, work-efficient [36] and direction-optimizing [7]
(bfs/do) . The latter is algorithmically better for RMAT-
style graphs. The IrGL versions are faster than their Gunrock
counterparts in all benchmarks except MST and BFS+DO
(RMAT). We note that Gunrock MST does not handle un-
connected graphs whereas IrGL MST does. Both Gunrock
BFS and SSSP would benefit strongly from iteration outlin-
ing, but Gunrock does not support iteration outlining.

6. Related Work
Past work on characterization of performance of GPU graph
algorithms has indicted the number of kernel calls [63, 65],

atomics [10, 42, 63], workload imbalance in traversal [63]
as well as other microarchitectural factors such as irregu-
lar data-dependent memory accesses. Our findings, from a
preliminary study of systematically generated IrGL code, is
more nuanced. For example, it is not the number of kernel
calls but the rate of kernel invocation that matters. Many
GPU algorithms (PageRank, MIS, CC) make few kernel
calls, but at a high enough rate to benefit from iteration
outlining. Similarly, we find serialization of nested parallel
loops during traversal is the underlying performance bottle-
neck, not workload imbalance. Workload imbalance can be
tackled through solutions like G-Streamline [67], but seri-
alization requires a compiler-based inspector–executor ap-
proach. Finally, no characterization study so far has recog-
nized how inspector–executor execution can increase the op-
portunities for reducing the number of atomics.

Several graph frameworks exist for the GPU [20, 24, 62,
69]. Most do not feature constructs for mutual exclusion,
and irregular algorithms like DMR cannot be expressed in
these frameworks. Since many of these frameworks are C++
template-based libraries, we consider it unlikely that they
can comprehensively tackle the bottlenecks identified in this
paper as effectively as our compiler.

Iteration outlining executes GPU kernels in a manner
similar to persistent GPU kernel [26, 56]. Our paper is the
first to propose a useful representation (the Pipe) and the
transformations required to perform this automatically.

Several compilers target nested data parallelism on the
GPU by compiling NESL to CUDA [8, 68], but the au-
thors admit that the code produced by these compilers is
not yet competitive with handwritten code. CUDA-NP [66]
uses programmer-provided OpenMP-like pragmas on loops
in CUDA code to generate code that exploits nested paral-
lelism. However, only one policy is available and the sched-
ule is fixed at compile time.

Cooperative conversion is functionally similar to com-
bining [21, 27] where fine-grained synchronization opera-
tions are combined serially by a thread into a coarser-grained
operation at runtime. CPU-like runtime combining cannot
be implemented on the GPU – CUDA threads cannot spin
safely [52]. Hence, cooperative conversion is performed by
our compiler and also allows all threads to perform their re-
quests in parallel.

Static analyses to identify uniform branches have been
developed for scalarization of vector code [15], executing
GPU code on CPUs [31] and for simplifying verification
of GPU kernels [5]. In this work, we choose to construct
uniform branches though we could use these analyses to
determine if user-provided branches are uniform, potentially
increasing the number of focal points.

Most CPU and distributed implementations of graph al-
gorithms [25, 35, 39, 54] are not restricted by program-
ming models like CUDA and so can use sophisticated run-
times to achieve high performance. Thus, other than Green-

Marl [29], a DSL compiler for graph analytics, and the
Elixir system [50, 51], most are library-based frameworks.
Green-Marl provides primitives like breadth-first traversal
and depth-first traversal and emphasizes the generation of
code to other runtimes such as Pregel [30]. The CPU opti-
mizations used by Green-Marl do not overlap with the GPU
optimizations presented in this work. The Elixir system syn-
thesizes parallel algorithmic variants of graph algorithms
from specifications higher-level than IrGL. It currently gen-
erates C++ code for the CPU, but could be retargeted to gen-
erate IrGL code.

7. Conclusion
This paper calls out for the first time three key throughput
optimizations essential for GPU implementations of high-
performance graph applications: iteration outlining, cooper-
ative conversion, and exploitation of nested parallelism in
graph traversals. We showed that these optimizations can be
automated in a compiler that generates CUDA code from
IrGL, a high-level programming model for graph applica-
tions. We implemented several recently proposed graph al-
gorithms in IrGL and showed that IrGL-generated code out-
performs handwritten CUDA code for these applications by
up to 6×.

Acknowledgments
This research was supported by NSF grants 1218568, 1337281,
1406355, and 1618425, and by DARPA BRASS contract
750-16-2-0004. The Tesla K40 used for this research was
donated by the NVIDIA Corporation.

Roshan Dathathri and Tal Ben-Nun caught subtle typo-
graphical errors in early versions of this paper. Discussions
with Andrew Lenharth were helpful. The anonymous re-
viewers at OOPSLA suggested changes that significantly
improved this paper.

A. Results on the Quadro M4000
We repeat the experiments from our evaluation on a NVIDIA
Quadro M4000, a Maxwell-based GPU. Compared to the
Kepler K40c, this card has less memory (8GB vs 12GB) and
less memory bandwidth (192GB/s vs 288GB/s).

We are unable to run MST from the baseline because it
is distributed as a binary-only blob that is not compatible
with a Maxwell GPU. We use the same IrGL code as in the
Kepler experiments, i.e. we do not tune for Maxwell. The
NVIDIA CUDA compiler recompiles the generated code for
Maxwell.

A.1 Overall Results
Our overall speedup results (Figure 11) do not change sig-
nificantly from those on the K40.

bfs cc dmr mis pr sssp triangles
Benchmark

0

1

2

3

4

5

6

G
e
o
m

e
a
n
 S

p
e
e
d
u
p

input_category

mesh
other
rmat
road

Figure 11. Speedup over hand-optimized code (geometric
mean). Higher is better.

bfs cc dmr mis pr sssp triangles
Benchmark

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
e
o
m

e
a
n
 S

p
e
e
d
u
p
 o

v
e
r

U
n
o
p
ti

m
iz

e
d
 I
rG

L

input_category

mesh
other
rmat
road

Figure 12. Speedup due to IrGL optimizations

A.2 Benefit of Optimizations
In general, Figure 12 shows lower speedups due to our opti-
mizations. Our examination of the binary code generated by
the NVIDIA CUDA compiler for Maxwell devices shows
that it performs warp-level aggregation of atomics for Com-
pute Capability 5.2 devices, a feature that we could not turn
off. Thus, “unoptimized” IrGL benchmarks are faster on the
Maxwell.

Figure 13, showing differences in speedups due to com-
binations of optimizations, highlights how the value of opti-
mizations change, including relative ordering between them
for a benchmark and input. Thus, a selection of optimization
does not hold over across generations of GPUs.

A.3 Comparison to Gunrock
IrGL continues to outperform Gunrock for BFS, SSSP and
CC as on the Kepler (Figure 14). Relative speedups are
generally lower compared to the Kepler, except for IrGL
SSSP on road networks.

cc/
other

cc/
rm

at

cc/
road

pr/r
mat

pr/r
oad

sss
p/other

sss
p/rm

at

sss
p/ro

ad
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
if
fe

re
n
ce

 i
n
 S

p
e
e
d
u
p
 o

v
e
r

U
n
o
p
ti

m
iz

e
d

cc

np

oitergb

cc+np

cc+oitergb

np+oitergb

cc+np+oitergb

Figure 13. Difference in speedup for all combinations
of optimizations. Legend: cc: cooperative conversion,
np: nested parallelism, iter: iteration outlining

bfs bfs/do cc mst sssp
Benchmark

0

5

10

15

20

Ir
G

L
G

e
o
m

e
a
n
 S

p
e
e
d
u
p
 o

v
e
r

G
u
n
R

o
ck

input_category

other
rmat
road

Figure 14. IrGL speedup over Gunrock. Higher is better.

References
[1] The LonestarGPU 2.0 benchmark suite, 2014. URL

http://iss.ices.utexas.edu/?p=projects/galois/
lonestargpu.

[2] J. Alglave, M. Batty, A. F. Donaldson, G. Gopalakrishnan,
J. Ketema, D. Poetzl, T. Sorensen, and J. Wickerson. GPU
concurrency: Weak behaviours and programming assump-
tions. In Ö. Özturk, K. Ebcioglu, and S. Dwarkadas, edi-
tors, Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’15, Istanbul, Turkey, March 14-
18, 2015, pages 577–591. ACM, 2015. ISBN 978-1-4503-
2835-7. . URL http://doi.acm.org/10.1145/2694344.
2694391.

[3] R. Baghdadi, A. Cohen, S. Guelton, S. Verdoolaege, J. In-
oue, T. Grosser, G. Kouveli, A. Kravets, A. Lokhmotov,
C. Nugteren, F. Waters, and A. Donaldson. PENCIL: To-
wards a Platform-Neutral Compute Intermediate Language
for DSLs. In WOLFHPC 2012 - 2nd Workshop on Domain-
Specific Languages and High-Level Frameworks for High Per-
formance Computing, Salt Lake City, Utah, United States,

Nov. 2012. URL https://hal.inria.fr/hal-00786828.

[4] R. Baghdadi, U. Beaugnon, A. Cohen, T. Grosser, M. Kruse,
C. Reddy, S. Verdoolaege, A. Betts, A. F. Donaldson,
J. Ketema, J. Absar, S. van Haastregt, A. Kravets, A. Lokhmo-
tov, R. David, and E. Hajiyev. PENCIL: A platform-neutral
compute intermediate language for accelerator programming.
In 2015 International Conference on Parallel Architecture and
Compilation, PACT 2015, San Francisco, CA, USA, October
18-21, 2015, pages 138–149. IEEE Computer Society, 2015.
ISBN 978-1-4673-9524-3. . URL http://dx.doi.org/10.
1109/PACT.2015.17.

[5] E. Bardsley, A. Betts, N. Chong, P. Collingbourne, P. Deli-
giannis, A. F. Donaldson, J. Ketema, D. Liew, and S. Qadeer.
Engineering a static verification tool for GPU kernels. In
A. Biere and R. Bloem, editors, Computer Aided Verification -
26th International Conference, CAV 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-
22, 2014. Proceedings, volume 8559 of Lecture Notes in Com-
puter Science, pages 226–242. Springer, 2014. ISBN 978-
3-319-08866-2. . URL http://dx.doi.org/10.1007/
978-3-319-08867-9_15.

[6] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ra-
manujam, A. Rountev, and P. Sadayappan. A Compiler
Framework for Optimization of Affine Loop Nests for GPG-
PUs. ICS ’08, 2008.

[7] S. Beamer, K. Asanovic, and D. A. Patterson. Direction-
optimizing breadth-first search. In J. K. Hollingsworth, ed-
itor, SC Conference on High Performance Computing Net-
working, Storage and Analysis, SC ’12, Salt Lake City, UT,
USA - November 11 - 15, 2012, page 12. IEEE/ACM, 2012.
ISBN 978-1-4673-0804-5. . URL http://dx.doi.org/10.
1109/SC.2012.50.

[8] L. Bergstrom and J. H. Reppy. Nested data-parallelism
on the GPU. In P. Thiemann and R. B. Findler, editors,
ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP’12, Copenhagen, Denmark, September 9-
15, 2012, pages 247–258. ACM, 2012. ISBN 978-1-4503-
1054-3. . URL http://doi.acm.org/10.1145/2364527.
2364563.

[9] A. Betts, N. Chong, A. F. Donaldson, J. Ketema, S. Qadeer,
P. Thomson, and J. Wickerson. The design and implemen-
tation of a verification technique for GPU kernels. ACM
Trans. Program. Lang. Syst., 37(3):10, 2015. . URL http:
//doi.acm.org/10.1145/2743017.

[10] M. Burtscher, R. Nasre, and K. Pingali. A quantitative study
of irregular programs on GPUs. In IISWC 2012, La Jolla, CA,
USA, November 4-6, 2012, IISWC 2012, 2012.

[11] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recur-
sive model for graph mining. In Proceedings of the Fourth
SIAM International Conference on Data Mining, pages 442–
446.

[12] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron.
Pannotia: Understanding irregular GPGPU graph applica-
tions. In Proceedings of the IEEE International Symposium
on Workload Characterization, IISWC 2013, Portland, OR,
USA, September 22-24, 2013, pages 185–195. IEEE Com-

puter Society, 2013. ISBN 978-1-4799-0553-9. . URL
http://dx.doi.org/10.1109/IISWC.2013.6704684.

[13] U. Cheramangalath, R. Nasre, and Y. Srikant. Falcon: A graph
manipulation language for heterogeneous systems. Technical
Report 2015-5, Indian Institute of Science, Department of
Computer Science and Automation, 2015.

[14] U. Cheramangalath, R. Nasre, and Y. N. Srikant. Falcon:
A graph manipulation language for heterogeneous systems.
TACO, 12(4):54, 2016. . URL http://doi.acm.org/10.
1145/2842618.

[15] S. Collange. Identifying scalar behavior in CUDA ker-
nels. Technical report, Jan. 2011. URL https://hal.
archives-ouvertes.fr/hal-00555134.

[16] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms, McGraw Hill, 2001.

[17] C. da Silva Sousa, A. Mariano, and A. Proença. A generic
and highly efficient parallel variant of Borůvka’s algorithm.
In 23rd Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing, 2015.

[18] A. A. Davidson, S. Baxter, M. Garland, and J. D. Owens.
Work-efficient parallel GPU methods for single-source short-
est paths. In 2014 IEEE IPDPS, 2014.

[19] I. J. Egielski, J. Huang, and E. Z. Zhang. Massive atomics for
massive parallelism on GPUs. In D. Grove and S. Z. Guyer,
editors, International Symposium on Memory Management,
ISMM ’14, Edinburgh, United Kingdom, June 12, 2014, pages
93–103. ACM, 2014. ISBN 978-1-4503-2921-7. . URL
http://doi.acm.org/10.1145/2602988.2602993.

[20] E. Elsen and V. Vaidyanathan. Vertexapi2 – a vertex-program
api for large graph computations on the gpu. 2014. URL
www.royal-caliber.com/vertexapi2.pdf.

[21] P. Fatourou and N. D. Kallimanis. Revisiting the combin-
ing synchronization technique. In Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPOPP 2012, New Orleans, LA, USA,
February 25-29, 2012, pages 257–266. ACM, 2012. . URL
http://doi.acm.org/10.1145/2145816.2145849.

[22] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Trans.
Program. Lang. Syst., 9(3):319–349, July 1987. ISSN 0164-
0925. . URL http://doi.acm.org/10.1145/24039.
24041.

[23] Z. Fu, B. B. Thompson, and M. Personick. MapGraph: A high
level API for fast development of high performance graph
analytics on GPUs. In P. A. Boncz and J. Larriba-Pey, edi-
tors, Second International Workshop on Graph Data Manage-
ment Experiences and Systems, GRADES 2014, co-loated with
SIGMOD/PODS 2014, Snowbird, Utah, USA, June 22, 2014,
pages 2:1–2:6. CWI/ACM, 2014. ISBN 978-1-4503-2982-8. .
URL http://doi.acm.org/10.1145/2621934.2621936.

[24] A. Gharaibeh, L. B. Costa, E. Santos-Neto, and M. Ripeanu. A
yoke of oxen and a thousand chickens for heavy lifting graph
processing. In PACT ’12. ACM, 2012. .

[25] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on
natural graphs. In C. Thekkath and A. Vahdat, edi-

tors, 10th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2012, Hollywood,
CA, USA, October 8-10, 2012, pages 17–30. USENIX
Association, 2012. ISBN 978-1-931971-96-6. URL
https://www.usenix.org/conference/osdi12/
technical-sessions/presentation/gonzalez.

[26] K. Gupta, J. A. Stuart, and J. D. Owens. A Study of Persistent
Threads Style GPU Programming for GPGPU Workloads. In
Innovative Parallel Computing, May 2012.

[27] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining
and the synchronization-parallelism tradeoff. In F. M. auf der
Heide and C. A. Phillips, editors, SPAA 2010: Proceedings
of the 22nd Annual ACM Symposium on Parallelism in Algo-
rithms and Architectures, Thira, Santorini, Greece, June 13-
15, 2010, pages 355–364. ACM, 2010. ISBN 978-1-4503-
0079-7. . URL http://doi.acm.org/10.1145/1810479.
1810540.

[28] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun. Acceler-
ating CUDA graph algorithms at maximum warp. In C. Cas-
caval and P. Yew, editors, Proceedings of the 16th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPOPP 2011, San Antonio, TX, USA, February
12-16, 2011, pages 267–276. ACM, 2011. ISBN 978-1-4503-
0119-0. . URL http://doi.acm.org/10.1145/1941553.
1941590.

[29] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-Marl: a
DSL for easy and efficient graph analysis. In T. Harris and
M. L. Scott, editors, Proceedings of the 17th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS 2012, London, UK,
March 3-7, 2012, pages 349–362. ACM, 2012. ISBN 978-
1-4503-0759-8. . URL http://doi.acm.org/10.1145/
2150976.2151013.

[30] S. Hong, S. Salihoglu, J. Widom, and K. Olukotun. Simpli-
fying scalable graph processing with a domain-specific lan-
guage. In D. R. Kaeli and T. Moseley, editors, 12th An-
nual IEEE/ACM International Symposium on Code Genera-
tion and Optimization, CGO 2014, Orlando, FL, USA, Febru-
ary 15-19, 2014, page 208. ACM, 2014. ISBN 978-1-4503-
2670-4. . URL http://doi.acm.org/10.1145/2544137.
2544162.

[31] R. Karrenberg and S. Hack. Improving Performance of
OpenCL on CPUs. In M. F. P. O’Boyle, editor, Compiler Con-
struction - 21st International Conference, CC 2012, Held as
Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2012, Tallinn, Estonia, March 24 -
April 1, 2012. Proceedings, volume 7210 of Lecture Notes in
Computer Science, pages 1–20. Springer, 2012. ISBN 978-
3-642-28651-3. . URL http://dx.doi.org/10.1007/
978-3-642-28652-0_1.

[32] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU:
A Compiler Framework for Automatic Translation and Opti-
mization. SIGPLAN Not., 44(4), Feb. 2009.

[33] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein. GraphLab: A new parallel framework for
machine learning. In Proc. Conf. Uncertainty in Artificial
Intelligence, UAI ’10, July 2010.

[34] M. Luby. A simple parallel algorithm for the maximal in-
dependent set problem. SIAM J. Comput., 15(4):1036–1053,
1986. . URL http://dx.doi.org/10.1137/0215074.

[35] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system
for large-scale graph processing. In A. K. Elmagarmid and
D. Agrawal, editors, Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD
2010, Indianapolis, Indiana, USA, June 6-10, 2010, pages
135–146. ACM, 2010. ISBN 978-1-4503-0032-2. . URL
http://doi.acm.org/10.1145/1807167.1807184.

[36] D. Merrill, M. Garland, and A. S. Grimshaw. Scalable GPU
graph traversal. In PPOPP 2012. ACM, 2012. .

[37] R. Nasre, M. Burtscher, and K. Pingali. Data-Driven Versus
Topology-driven Irregular Computations on GPUs. In IPDPS
2013, 2013.

[38] R. Nasre, M. Burtscher, and K. Pingali. Morph algorithms on
GPUs. In PPoPP ’13, PPoPP ’13, 2013.

[39] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infras-
tructure for graph analytics. In M. Kaminsky and M. Dahlin,
editors, ACM SIGOPS 24th Symposium on Operating Sys-
tems Principles, SOSP ’13, Farmington, PA, USA, November
3-6, 2013, pages 456–471. ACM, 2013. ISBN 978-1-4503-
2388-8. . URL http://doi.acm.org/10.1145/2517349.
2522739.

[40] NVIDIA. NVIDIA’s next generation CUDA compute archi-
tecture: Kepler GK110 (whitepaper).

[41] The CUDA C Programming Guide 7.5. NVIDIA, 2015.

[42] M. A. O’Neil and M. Burtscher. Microarchitectural perfor-
mance characterization of irregular GPU kernels. In 2014
IEEE International Symposium on Workload Characteriza-
tion, IISWC 2014, Raleigh, NC, USA, October 26-28, 2014,
pages 130–139. IEEE Computer Society, 2014. ISBN 978-
1-4799-6452-9. . URL http://dx.doi.org/10.1109/
IISWC.2014.6983052.

[43] The OpenACC API 2.0. OpenACC.org, 2013.

[44] The OpenMP API 4.0. OpenMP Architecture Review Board,
2013.

[45] S. Pai and K. Pingali. Lowering IrGL to CUDA. CoRR,
abs/1607.05707, 2016. URL http://arxiv.org/abs/
1607.05707.

[46] S. Pai, R. Govindarajan, and M. J. Thazhuthaveetil. Fast
and efficient automatic memory management for GPUs using
compiler-assisted runtime coherence scheme. PACT 2012.
ACM, 2012. .

[47] K. Pingali and G. Bilardi. Optimal Control Dependence Com-
putation and the Roman Chariots Problem. ACM Trans. Pro-
gram. Lang. Syst., 19(3):462–491, May 1997. ISSN 0164-
0925. . URL http://doi.acm.org/10.1145/256167.
256217.

[48] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A.
Hassaan, R. Kaleem, T. Lee, A. Lenharth, R. Manevich,
M. Méndez-Lojo, D. Prountzos, and X. Sui. The tao of paral-
lelism in algorithms. In PLDI 2011, PLDI 2011. ACM, 2011.
.

[49] A. Polak. Counting triangles in large graphs on GPU.
CoRR, abs/1503.00576, 2015. URL http://arxiv.org/
abs/1503.00576.

[50] D. Prountzos, R. Manevich, and K. Pingali. Elixir: a system
for synthesizing concurrent graph programs. In G. T. Leavens
and M. B. Dwyer, editors, Proceedings of the 27th Annual
ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2012,
part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012,
pages 375–394. ACM, 2012. ISBN 978-1-4503-1561-6. .
URL http://doi.acm.org/10.1145/2384616.2384644.

[51] D. Prountzos, R. Manevich, and K. Pingali. Synthesizing par-
allel graph programs via automated planning. In D. Grove
and S. Blackburn, editors, Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Im-
plementation, Portland, OR, USA, June 15-17, 2015, pages
533–544. ACM, 2015. ISBN 978-1-4503-3468-6. . URL
http://doi.acm.org/10.1145/2737924.2737953.

[52] A. Ramamurthy. Towards scalar synchronization in SIMT
architectures. Master’s thesis, The University of British
Columbia, 2011.

[53] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan
primitives for GPU computing. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS Conference on Graph-
ics Hardware 2007, 2007.

[54] J. Shun and G. E. Blelloch. Ligra: a lightweight graph process-
ing framework for shared memory. In A. Nicolau, X. Shen,
S. P. Amarasinghe, and R. W. Vuduc, editors, ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’13, Shenzhen, China, February 23-27, 2013,
pages 135–146. ACM, 2013. ISBN 978-1-4503-1922-5. .
URL http://doi.acm.org/10.1145/2442516.2442530.

[55] J. Soman, K. Kothapalli, and P. J. Narayanan. A fast GPU
algorithm for graph connectivity. In 24th IEEE International
Symposium on Parallel and Distributed Processing, IPDPS
2010, Atlanta, Georgia, USA, 19-23 April 2010 - Workshop
Proceedings, pages 1–8. IEEE, 2010. . URL http://dx.
doi.org/10.1109/IPDPSW.2010.5470817.

[56] M. Steinberger, M. Kenzel, P. Boechat, B. Kerbl, M. Dokter,
and D. Schmalstieg. Whippletree: task-based scheduling of
dynamic workloads on the GPU. ACM Trans. Graph., 33
(6):228:1–228:11, 2014. . URL http://doi.acm.org/10.
1145/2661229.2661250.

[57] L. O. Steven Dalton, Nathan Bell and M. Garland. Cusp:
Generic parallel algorithms for sparse matrix and graph com-
putations, 2014. URL http://cusplibrary.github.io/.
Version 0.5.0.

[58] A. Venkat, M. Hall, and M. Strout. Loop and data transforma-
tions for sparse matrix code. PLDI 2015, 2015.

[59] S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gómez, C. Tenl-
lado, and F. Catthoor. Polyhedral parallel code generation for
CUDA. ACM Trans. Archit. Code Optim., 9(4):54:1–54:23,
Jan. 2013. ISSN 1544-3566. .

[60] V. Vineet, P. Harish, S. Patidar, and P. J. Narayanan. Fast min-
imum spanning tree for large graphs on the GPU. In Proceed-

ings of the ACM SIGGRAPH/EUROGRAPHICS Conference
on High Performance Graphics 2009. ACM, 2009. .

[61] Y. Wang, A. A. Davidson, Y. Pan, Y. Wu, A. Riffel, and
J. D. Owens. Gunrock: a high-performance graph processing
library on the GPU. PPoPP 2015. ACM, 2015. .

[62] Y. Wang, A. A. Davidson, Y. Pan, Y. Wu, A. Riffel, and
J. D. Owens. Gunrock: a high-performance graph process-
ing library on the GPU. In R. Asenjo and T. Harris, editors,
Proceedings of the 21st ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, PPoPP 2016,
Barcelona, Spain, March 12-16, 2016, page 11. ACM, 2016.
ISBN 978-1-4503-4092-2. . URL http://doi.acm.org/
10.1145/2851141.2851145.

[63] Y. Wu, Y. Wang, Y. Pan, C. Yang, and J. D. Owens. Per-
formance characterization of high-level programming mod-
els for GPU graph analytics. In 2015 IEEE International
Symposium on Workload Characterization, IISWC 2015, At-
lanta, GA, USA, October 4-6, 2015, pages 66–75. IEEE, 2015.
ISBN 978-1-5090-0088-3. . URL http://dx.doi.org/10.
1109/IISWC.2015.13.

[64] S. Xiao and W. Feng. Inter-block GPU communication via
fast barrier synchronization. IPDPS 2010. IEEE, 2010. .

[65] Q. Xu, H. Jeon, and M. Annavaram. Graph processing on
GPUs: Where are the bottlenecks? In 2014 IEEE Inter-

national Symposium on Workload Characterization, IISWC
2014, Raleigh, NC, USA, October 26-28, 2014, pages 140–
149. IEEE Computer Society, 2014. ISBN 978-1-4799-6452-
9. . URL http://dx.doi.org/10.1109/IISWC.2014.
6983053.

[66] Y. Yang and H. Zhou. CUDA-NP: realizing nested thread-
level parallelism in GPGPU applications. PPoPP 2014. ACM,
2014. .

[67] E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen. On-the-
fly elimination of dynamic irregularities for GPU computing.
In R. Gupta and T. C. Mowry, editors, Proceedings of the
16th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
2011, Newport Beach, CA, USA, March 5-11, 2011, pages
369–380. ACM, 2011. ISBN 978-1-4503-0266-1. . URL
http://doi.acm.org/10.1145/1950365.1950408.

[68] Y. Zhang and F. Mueller. CuNesl: Compiling Nested Data-
Parallel Languages for SIMT Architectures. In 41st Interna-
tional Conference on Parallel Processing, ICPP 2012, Pitts-
burgh, PA, USA, September 10-13, 2012, pages 340–349.
IEEE Computer Society, 2012. ISBN 978-1-4673-2508-0. .
URL http://dx.doi.org/10.1109/ICPP.2012.21.

[69] J. Zhong and B. He. Medusa: Simplified Graph Processing on
GPUs. IEEE Trans. Parallel Distrib. Syst., 25(6), 2014. .

