
CSC2/455 Software Analysis and

Improvement

Introduction

Sreepathi Pai

January 12, 2022

URCS

Outline

Classical Compiler Analysis

Program Analysis

Fundamental Issues

Administrivia

Outline

Classical Compiler Analysis

Program Analysis

Fundamental Issues

Administrivia

An example program

#include <stdio.h>

int main(void) {
int N = 10000;
int sum = 0;

for(int i = 1; i < N; i++) {
sum += i;

}

if(sum > 0) {
printf("%d: %x\n", sum, sum);

} else {
printf("sum is zero\n");

}

return 0;
}

Compiled with gcc -O0

main:
pushq %rbp
movq %rsp, %rbp
subq $16, %rsp
movl $10000, -4(%rbp)
movl $0, -12(%rbp)
movl $1, -8(%rbp)
jmp .L2

.L3:
movl -8(%rbp), %eax
addl %eax, -12(%rbp)
addl $1, -8(%rbp)

.L2:
movl -8(%rbp), %eax
cmpl -4(%rbp), %eax
jl .L3
cmpl $0, -12(%rbp)
jle .L4
movl -12(%rbp), %edx
movl -12(%rbp), %eax
movl %eax, %esi
leaq .LC0(%rip), %rdi
movl $0, %eax
call printf@PLT
jmp .L5

.L4:
leaq .LC1(%rip), %rdi
call puts@PLT

.L5:
movl $0, %eax
leave
ret

Compiled with gcc -O1

main:
subq $8, %rsp
movl $9999, %eax

.L2:
movl $49995000, %ecx
movl $49995000, %edx
leaq .LC0(%rip), %rsi
movl $1, %edi
movl $0, %eax
call __printf_chk@PLT
movl $0, %eax
addq $8, %rsp
ret

The compiler:

� Eliminated the for loop

� Replaced it with the value computed

� Eliminated the else part of the if/then

� Because it would never execute

How did it do that?

How do you think the compiler did this?

Compilers today

� GNU Compiler Collection (GCC)

� LLVM

� Many proprietary compilers based on LLVM

� Visual Studio

� Proprietary compilers

� Intel icc

� NVIDIA/Portland Group

Outline

Classical Compiler Analysis

Program Analysis

Fundamental Issues

Administrivia

Analysis (and Verification)

� How many times will this loop execute?

� Will this condition always be true?

� Is this value always a constant?

� Are there bugs in a given piece code?

� NULL pointer dereferences?

� Data races (in concurrent code)?

� Is this code correct (according to some specification)?

Properties

� Safety properties

� Informally, “something bad will never happen”

� Formally, a property that is always true

� Liveness properties

� Informally, “something good will eventually happen”

� Formally, a property that will eventually be true

� Other properties:

� All allocated memory is freed

� All open files are closed

Program Analysis Tools today

� (Synopsys) Coverity

� GrammaTech CodeSonar

� Facebook Infer

� Frama-C

� PVS-Studio

� Microsoft SLAM

� Lots of others...

Outline

Classical Compiler Analysis

Program Analysis

Fundamental Issues

Administrivia

What does this Python program do?

for i in range(n):
print("boom!")

Strategy: Run (or Interpret) the program

� Running the program and observing what it does is a perfectly
reasonable way of analyzing a program

� Maybe run it in a simulator/VM or interpreter

� What problems do you anticipate with this strategy?

Some potential problems

� Too long

� Infinite loop (aka non-termination)

� Number of inputs may be infinite!

� Behaviour may depend on input

What does this program do?

def collatz(n): # n is a positive integer
while n > 1:

print(n)
if n % 2 == 0:

n = n // 2 # integer division
else:

n = 3 * n + 1

for i in range(n):
print("boom!")

Some runs: n=5

5
16
8
4
2
1
boom!

Some runs: n=12

12
6
3
10
5
16
8
4
2
1
boom!

Analyzing this program

� This program will print only 1 boom!

� If the loop terminates

� Only if n is always reduced to 1

� Is it always? ($500 reward!)

� Can we determine if the loop terminates?

� For any n?

� For a fixed n?

Undecidability: The Halting Problem

� In general, an algorithm cannot determine if a program will

terminate on a given input

� What does this imply for program analysis?

� End of this course?

Program Analysis

� Program analysis needed for optimization (“making programs
faster”)

� Reducing number of operations

� Substituting cheaper operations

� Increasing parallelism of operations

� Also need for verification (“security”)

� Will this program crash for any input?

� Will this program leak memory? (malloc but no

corresponding free)

� Will this program read another user’s files?

� Can a program be subverted to obtain root access?

� Computers everywhere, such questions far more important
now!

� 4.4B people have smartphones!

Mission Impossible?

� No general technique to analyze programs

� Many different approaches

� We will study many of these

� Basic

� Advanced

� Recent advances

Roadmap of the course: Part I

� Dataflow Analysis (DFA)

� Mostly used in compilers

� Automatic, fast, and approximate

� You’ll construct the “mid-end” of a compiler for a subset of
the C language

� Introduces you to the engineering and theoretical aspects

� One specialized non-compiler tool: Oracle’s Soufflé

Program Analysis: Part II

� Abstract Interpretation (AI)

� Automatic, slower, and approximate

� Specialized tools: Facebook Infer, many others

� Model Checking

� Automatic, fast (but not as fast as DFA), and precise

� Can be intractable

� We’ll look at CBMC, perhaps also Spin

� Symbolic Execution

� Automatic, fast, and precise

� Can be intractable

� We’ll look at KLEE and maybe Angr

� Deductive Techniques

� Manual to semi-automated, as fast as you think, and precise

� Essentially involves writing proofs

� We’ll look at (Microsoft) Dafny

Some things program analysis makes possible

� Fast Javascript

� pioneered by Google’s V8

� Safe in-kernel execution of user-provided code

� Linux eBPF

� pioneered by Sun’s DTrace

� Safe systems programming languages

� Rust

� Airplanes in the sky

� Remember Boeing 737 MAX?

Outline

Classical Compiler Analysis

Program Analysis

Fundamental Issues

Administrivia

People

� Instructor: Dr. Sreepathi Pai

� E-mail: sree@cs.rochester.edu

� Office: In cyberspace, see Blackboard for Zoom link

� Office Hours: Tuesday 13:00 to 14:00 (or by appointment)

� TAs:

� Paul Ouellette

Places

� Class: Zoom (for now), Gavett 301 (when we are back in
person)

� M,W 1025–1140

� Course Website

� https://cs.rochester.edu/~sree/courses/

csc-255-455/spring-2022/

� Blackboard

� Announcements

� Gradescope

� Assignments, Homeworks, Grades, etc.

� Piazza

� Help

https://cs.rochester.edu/~sree/courses/csc-255-455/spring-2022/
https://cs.rochester.edu/~sree/courses/csc-255-455/spring-2022/

References

� Three textbooks

� Aho, Lam, Ullman, Sethi, Compilers: Principles, Techniques

and Tools

� Cooper and Torczon, Engineering a Compiler

� Rival and Yi, Introduction to Static Analysis: An Abstract

Interpretation Perspective, MIT Press, 2020

� This course requires a lot of reading!

� See Blackboard for information on accessing Reserves

Grading

� Homeworks: 15%

� Assignments: 70% (5 to 6)

� Exams/Project: 15% (TBD)

� Graduate students should expect to read a lot more, and work

on harder problems.

There is no fixed grading curve.

See course website for late submissions policy.

Academic Honesty

� Unless explicitly allowed, you may not show your code to

other students

� You may discuss, brainstorm, etc. with your fellow students

but all submitted work must be your own

� All help received must be acknowledged in writing when

submitting your assignments and homeworks

� All external code you use must be clearly marked as such in
your submission

� Use a comment and provide URL if appropriate

� If in doubt, ask the instructor

� It is a violation of course honesty to make your assignments

on GitHub (or similar sites) public

All violations of academic honesty will be dealt with strictly as per

UR’s Academic Honesty Policy.

https://www.rochester.edu/college/honesty/

Course Goals

� Write your own compilers

� Modify existing compilers

� Read about new analyses (in research papers)

� Create new analyses

� Use analysis tools and frameworks

	Classical Compiler Analysis
	Program Analysis
	Fundamental Issues
	Administrivia

