
CSC2/455 Software Analysis and

Improvement

Intermediate Representations (IRs)

Sreepathi Pai

January 19, 2022

URCS

Outline

Introduction

Midend

Miscellaneous

Outline

Introduction

Midend

Miscellaneous

Classic Compiler Architecture

MidendFrontend Backend

Language-Specific Machine-SpecificMostly Language and
Machine Independent

Recommended reading: Chris Lattner, LLVM, The Architecture of Open Source Applications

https://www.aosabook.org/en/llvm.html

Outline

Introduction

Midend

Miscellaneous

What does the midend do?

� Mostly language and machine independent analyses

� Majority of analyses run in this stage

� Multiple intermediate representations used

� Starts from abstract syntax tree

� Usually stops before instruction scheduling/register allocation

� Examples: AST, CFG, DDG, PDG, etc.

� There is no one Intermediate Representation (IR)

� although people have tried ...

Mid-end structure

� Organized as a set of passes

� Each pass usually performs one task

� Some specific analysis of the IR

� Some transformation of the IR

� Input to each pass is the IR and output is also the IR

� And usually analysis results, etc.

Running example

x =
−b ±

√
b2 − 4ac

2a

In Python (assume math.sqrt is sqrt):

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)

Abstract Syntax Tree

=

x /

b

-

-

sqrt

*

-

2 a

* *

b b * c

4 a

AST as a list

ast = [’=’,
[’x’,
[’/’,
[’-’,
[’neg’, ’b’],
[’sqrt’,
[’-’,
[’*’, ’b’, ’b’],
[’*’,
[’*’, ’4’, ’a’],
’c’

]
]
]
],
[’*’, ’2’, ’a’]

]
]
]

� What does this remind you of?

Slightly less LISPy

class Node(object):
operator = None
left = None
right = None

� Actual ASTs are not binary trees!

� Will usually have list of descendants instead of left and

right

� descendants may be more specific, while may have

condition and body

Linear Forms

� ASTs imply treewalking

� Works best when manipulating source code

� e.g. Source-to-source compilers

� Or when control flow is not important

� Other lower level forms are “closer to machine”

� Stack machines

� 3 address code

Stack Machine

push a
push 2
mul
push c
push a
push 4
mul
mul
push b
push b
mul
sub
sqrt
push b
neg
sub
div
pop x

How do you produce stack machine code from an AST?

Generating Stack Machine Code

push a
push 2
mul
push c
push a
push 4
mul
mul
push b
push b
mul
sub
sqrt
push b
neg
sub
div
pop x

=

x /

b

-

-

sqrt

*

-

2 a

* *

b b * c

4 a

Stack machines

� Compact in size

� Operands are implicit – on top of stack.

� Easy to execute

� BUT, fixed order of execution

� Bad for parallelism

� Hard to analyze

� Nevertheless, widely used:

� Java bytecode

� Python bytecode

� WebAssembly

3 address code

� 3 “addresses”

� Two source operands

� One destination operand

� One operation

� Addresses are actually names generated by compiler

� Or refer directly to variables

Our example in 3-address code

t1 <- -b

t2 <- b * b
t3 <- 4 * a
t4 <- t3 * c
t5 <- t2 - t4
t6 <- sqrt(t5)

t7 <- t1 - t6
t8 <- 2 * a
t9 <- t7 / t8

x <- t9

(Here ‘<-’ is ←, signifying assignment)

How do we produce 3-address code from the AST?

Producing 3-address code

t1 <- -b

t2 <- b * b
t3 <- 4 * a
t4 <- t3 * c
t5 <- t2 - t4
t6 <- sqrt(t5)

t7 <- t1 - t6
t8 <- 2 * a
t9 <- t7 / t8

x <- t9

=

x /

b

-

-

sqrt

*

-

2 a

* *

b b * c

4 a

Data Dependence Graphs (DDGs)

� DDGs track “data flow” as

an acyclic graph

� Strict (partial) order in
which operations must be
performed

� Can’t use a value that has

not been calculated yet!

� But multiple orders may be
allowed!

� Topological sort

� Will revisit DDGs when we

discuss instruction

scheduling

t9

x

t7 t8

t1 t6

t5

t2 t4

t3

DDG Example

t1 <- -b

t2 <- b * b
t3 <- 4 * a
t4 <- t3 * c
t5 <- t2 - t4
t6 <- sqrt(t5)

t7 <- t1 - t6
t8 <- 2 * a
t9 <- t7 / t8

x <- t9

DDG Example, reordered by dependence

group 1
t1 <- -b
t2 <- b * b
t3 <- 4 * a
t8 <- 2 * a

must wait for t3
t4 <- t3 * c

must wait for t4 and t2
t5 <- t2 - t4

...
t6 <- sqrt(t5)

t7 <- t1 - t6

t9 <- t7 / t8

x <- t9

t9

x

t7 t8

t1 t6

t5

t2 t4

t3

Control structures in 3-address code

What should the 3 address code for the code below look like?

if n % 2 == 0:
n = n / 2

else:
n = 3 * n + 1

The AST for if

if

== = =

% 0 n / n +

n 2

3 n

* 1n 2

� An if AST node has a condition, true-code, and

false-code

3-Address Code for if

t1 <- n % 2
tc <- t1 == 0
if (tc == 0) goto L1

t2 <- n / 2
n <- t2
goto L2

L1:
t3 <- 3 * n
t4 <- t3 + 1
n <- t4

L2:

� 3-address code can contain:

� conditional branches, usually just a comparison to zero

� unconditional branches

� labels

Control Flow Graphs (CFGs)

� “Hybrid” representation

� Linear code + Graph

structure

� Each node in the CFG is a
“basic block”

� Linear code

� Single entry, single exit

� “Straight-line code”

� Most common form for

analysis

ENTRY

 t1 <- n % 2
t1 == 0

EXIT

 t2 <- n / 2
 n <- t2

 t3 <- 3 * n
 t4 <- t3 + 1

 n <- t4

In this course

� We will write midend + some bits of a backend

� Input language: C

� Output language: C in 3-address form

� Not assembly (maybe extra credit?)

� Using Python library pycparser

For assignments, make sure to review

� Basic data structures

� lists

� trees

� graphs

� Basic data structure traversals

� Infix, prefix, postfix

� Depth-first, breadth-first

� And how to implement them in Python

� Using Python standard libraries is fine

Outline

Introduction

Midend

Miscellaneous

Not-so-classic ‘Compiler’ Architectures

What is this code from TensorFlow doing?

a = tf.constant(2)
b = tf.constant(3)

with tf.Session() as sess:
print("a=2, b=3")
print("Addition with constants: %i" % sess.run(a+b))
print("Multiplication with constants: %i" % sess.run(a*b))

https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/basic_

operations.py

https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/basic_operations.py
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/basic_operations.py

Metaprogramming

� TensorFlow API builds a graph

� directed, acyclic

� similar to the DDG

� very common technique

� When sess.run is called, graph is compiled and executed

� Advantages:

� No syntax, no parsing!

� Disadvantages:

� ?

References

� Chapter 5 of Cooper and Turczon

� Up to 5.4 in this lecture, but we will ultimately study the

whole chapter

	Introduction
	Midend
	Miscellaneous

