
CSC2/455 Software Analysis and

Improvement

Value Numbering

Sreepathi Pai

Jan 24, 2022

URCS



Outline

Review

An Introduction to Code Optimization

Local Value Numbering (LVN)

Postscript



Outline

Review

An Introduction to Code Optimization

Local Value Numbering (LVN)

Postscript



What we know how to do so far

� ASTs to 3-address code

� 3-address code to Basic Blocks

� Basic blocks to Control Flow Graphs

� (Tested in second assignment, out later this week)



Some Useful Background Material

� Not needed if you have CSC 2/454

� Otherwise, read Cooper and Turczon:

� Chapter 6 (“The Procedure Abstraction”)

� Chapter 7 (“Code Shape”)



Outline

Review

An Introduction to Code Optimization

Local Value Numbering (LVN)

Postscript



Basic Goals

� Reduce execution time (“performance”)

� Most of our time spent on this topic

� Reduce code size

� Was hugely important, less so in the past decade or so

� Increasingly important again (small devices, slow memory, etc.)

� Code size reduction often improves performance

� Instructions that do not execute consume no time

� Better cache behaviour

� But not always...



Can’t programmers write fast code?

Major impediments:

� High-level languages

� Productivity is more important than performance(?)

� But lose control over machine

� Complex machines

� Out-of-order superscalar machines

� “Simple” machines

� Very-long instruction word (VLIW) machines



Classifying Optimizations

� At what level of code should we look at to identify

optimization opportunities?

� What additional information about the program can help us?



Peephole Optimizations

� Look at a window (or “peephole”) of instructions in 3-address
code

� Usually within a basic block

� Example: Strength reduction

� Replacing costly operations (e.g. multiply) by cheaper

operations (e.g. shifts)

� a * 8 can be replaced with a << 3

� Usually implemented by pattern matching over a pre-defined
library

� Library usually constructed by reading books like Hacker’s

Delight or Matters Computational: Ideas, Algorithms, Source

Code



Local optimizations

� Look at basic blocks only

� Remember:

� If one instruction in basic block executes, all instructions

execute

� Can assume instructions execute one after the other

� Major limitation

� Size (Length) of basic block



Increasing the size of basic blocks

� “Region” analysis

� Many forms:

� Extended Basic Blocks

� Superblocks

� Hyperblocks

� Basic idea, use a trace to build a larger basic block

� a trace is an execution path



Global optimizations

� Global means procedure level

� A procedure has a single entry and exit

� E.g. C functions

� not global as in global variables

� A global analysis usually operates on a control-flow graph

� Sometimes called “intraprocedural” analysis



Interprocedural (Whole program) Optimizations

� Operates on the entire source code of a program

� Sometimes called “context-sensitive analysis”

� Allows compiler to distinguish invocations of the same function

� More opportunities for optimization!

� Must keep track of function calls

� Usually, in a structure called the “call graph”



Link-time Optimization

� Traditional compiler flow

� Program contains

multiple translation units

(usu. a .c file)

� Translation unit to object

(.o file)

� Combine object files and

libraries (“link”) to

generate executable

� Usually hidden by a

compiler driver like gcc

� Misses opportunities for

cross-object optimizations

a.c

cc

b.c

cc

a.o

ld

b.o libc

a.out



Link Time Optimizers

� LLVM LTO

� GCC LTO

� These require that object
files be in compiler-specific
intermediate representations

� LLVM Bitcode for LLVM

� GIMPLE for GCC

� Nice case studies of Firefox
being compiled with LTO
online

� Search for “Firefox LTO

Link Time Optimization”

a.c

lto-cc

b.c

lto-cc

a.ir

lto-link

b.ir libc

a.out

https://llvm.org/docs/LinkTimeOptimization.html
https://gcc.gnu.org/onlinedocs/gccint/LTO-Overview.html


Runtime (Dynamic) optimization

� Optimization while a program is running

� Sometimes a necessity:

� E.g., JavaScript

� Sometimes called Just-in-time (JIT) compilation

� because mostly associated with JIT VMs

� Big advantage:

� Have nearly all the information required to optimize program

� Big disadvantage?



Examples of Dynamic Optimizers

� Java

� Hotspot VM

� JavaScript

� V8

� Python

� PyPy

� Your-language-here

� RPython (used to build PyPy)

� Graal and Truffle



Additional Information: Profiles

� Most optimizers only look at source code

� But additional information can help:

� What is the most common direction of this branch? (see gcc’s

builtin expect)

� What is the most likely target of this indirect function call?

� General technique: profile-based optimization or profile-guided
optimization (PGO)

� Instrument program to generate statistics (i.e. profile)

� Generate statistics on program run

� Compiler recompiles code based on gathered profile



Profile-guided Optimization using GCC

gcc -fprofile-generate program.c # instrumented executable
./program # gathers profile data
gcc -fprofile-use program.c # PGO executable

� This instruments the code to gather:

� statistics of values in expressions

� branch probabilities

� These values are gathered (“profiled”) when the program is

run

� The feedback gathered during a run can be used for:

� Inlining functions

� Laying out code

� Loop unrolling, etc.



Outline

Review

An Introduction to Code Optimization

Local Value Numbering (LVN)

Postscript



Getting rid of redundant calculations

ed = (a0 - a1)*(a0 - a1) + (b0 - b1)*(b0 - b1)

Optimized code sequence:

t1 = a0 - a1
t2 = t1 * t1
t3 = b0 - b1
t4 = t3 * t3
ed = t2 + t4



Where does this code arise?

� High-level languages

� AST to 3-address code generation rules

� e.g. array indexing

� x = A[i][j] + A[i][j+1]?



Array indexing example

t1 = i * dimsize(A, 1)
t2 = t1 + j
t3 = *(A + t2)

t4 = i * dimsize(A, 1)
t5 = t4 + j
t6 = t5 + 1
t7 = *(A + t6)

x = t3 + t7

dimsize(A, dim) is a function that returns an integer indicating

the size of dimension dim of array A (0 or 1).



Compiler structure

� Compilers rewrite and lower your code

� Can introduce significant redundancy in the process

� Logically cleaner (and simpler!) to reduce redundancy using
dedicated passes

� Keeps rewrites (incl. translation) simple



Value Numbering

� Value numbering is a local optimization

� Assigns numbers to each value in the basic block

� Literals

� Variables

� Expressions

� VN(x) is the the number assigned to x

� Design VN(x) such that:

� VN(x) == VN(y) if-and-only-if (iff) x == y



Example case

t1 = a0 - a1
t2 = a0 - a1
t3 = t1 * t2

t4 = b0 - b1
t5 = b0 - b1
t6 = t4 * t5

ed = t3 + t6



Example case: Assigning value numbers

t1 = a0 - a1 # 2 = 0 - 1
t2 = a0 - a1 # 2 = 0 - 1
t3 = t1 * t2 # 3 = 2 * 2

t4 = b0 - b1 # 6 = 4 - 5
t5 = b0 - b1 # 6 = 4 - 5
t6 = t4 * t5 # 7 = 6 * 6

ed = t3 + t6 # 8 = 3 + 7



After optimization

t1 = a0 - a1 # 2 = 0 - 1
t3 = t1 * t1 # 3 = 2 * 2

t4 = b0 - b1 # 6 = 4 - 5
t6 = t4 * t4 # 7 = 6 * 6

ed = t3 + t6 # 8 = 3 + 7

Algorithms in Figure 8.2, 8.4 of Cooper and Turczon



Quality of VN(x)

� What happens if your VN(x) assigns different values to
VN(x) and VN(y) when x == y?

� a = 1 * c

� b = c

� What happens if your VN(x) assigns the same value to
VN(x) and VN(y) when x 6= y?

� t1 = c + d; t2 = t1 + e

� t3 = d + e; t4 = t3 + c

� Here: is t2 equal to t4?

� (assume c, d and e are float)



Completeness and Soundness

� Let ? represent true statements, ∗ represent false statements

� Let there be a procedure P that takes a statement as input

and determines if it is true or not

� If P(?) = T and P(∗) = F for all ? and ∗, P is sound and

complete

� Usually, though P(?) =? or P(∗) =?, i.e. P is incomplete

� Additionally, if P(∗) never returns true, P is sound



Completeness and Soundness

� Completeness

� Can we prove all true statements?

� e.g., can we derive equality for all expressions that are equal?

� False Negative, we say “no”, when it is actually “yes” [Type II

error]

� Soundness

� Roughly, are all statements that have proofs actually true?

� e.g., we can never derive equality for expressions that are not

equal

� False Positive, we say “yes”, when it is actually “no” [Type I

error]



Why limit ourselves to basic blocks?

What would happen if we ran value numbering across basic blocks?



Outline

Review

An Introduction to Code Optimization

Local Value Numbering (LVN)

Postscript



References

� Chapter 8 of Cooper and Turczon

� Up to (but not including) 8.4.2


	Review
	An Introduction to Code Optimization
	Local Value Numbering (LVN)
	Postscript

