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What we know how to do so far

� ASTs to 3-address code

� 3-address code to Basic Blocks

� Basic blocks to Control Flow Graphs

� (Tested in second assignment, out later this week)



Some Useful Background Material

� Not needed if you have CSC 2/454

� Otherwise, read Cooper and Turczon:

� Chapter 6 (“The Procedure Abstraction”)

� Chapter 7 (“Code Shape”)
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Basic Goals

� Reduce execution time (“performance”)

� Most of our time spent on this topic

� Reduce code size

� Was hugely important, less so in the past decade or so

� Increasingly important again (small devices, slow memory, etc.)

� Code size reduction often improves performance

� Instructions that do not execute consume no time

� Better cache behaviour

� But not always...



Can’t programmers write fast code?

Major impediments:

� High-level languages

� Productivity is more important than performance(?)

� But lose control over machine

� Complex machines

� Out-of-order superscalar machines

� “Simple” machines

� Very-long instruction word (VLIW) machines



Classifying Optimizations

� At what level of code should we look at to identify

optimization opportunities?

� What additional information about the program can help us?



Peephole Optimizations

� Look at a window (or “peephole”) of instructions in 3-address
code

� Usually within a basic block

� Example: Strength reduction

� Replacing costly operations (e.g. multiply) by cheaper

operations (e.g. shifts)

� a * 8 can be replaced with a << 3

� Usually implemented by pattern matching over a pre-defined
library

� Library usually constructed by reading books like Hacker’s

Delight or Matters Computational: Ideas, Algorithms, Source

Code



Local optimizations

� Look at basic blocks only

� Remember:

� If one instruction in basic block executes, all instructions

execute

� Can assume instructions execute one after the other

� Major limitation

� Size (Length) of basic block



Increasing the size of basic blocks

� “Region” analysis

� Many forms:

� Extended Basic Blocks

� Superblocks

� Hyperblocks

� Basic idea, use a trace to build a larger basic block

� a trace is an execution path



Global optimizations

� Global means procedure level

� A procedure has a single entry and exit

� E.g. C functions

� not global as in global variables

� A global analysis usually operates on a control-flow graph

� Sometimes called “intraprocedural” analysis



Interprocedural (Whole program) Optimizations

� Operates on the entire source code of a program

� Sometimes called “context-sensitive analysis”

� Allows compiler to distinguish invocations of the same function

� More opportunities for optimization!

� Must keep track of function calls

� Usually, in a structure called the “call graph”



Link-time Optimization

� Traditional compiler flow

� Program contains

multiple translation units

(usu. a .c file)

� Translation unit to object

(.o file)

� Combine object files and

libraries (“link”) to

generate executable

� Usually hidden by a

compiler driver like gcc

� Misses opportunities for

cross-object optimizations

a.c

cc

b.c

cc

a.o

ld

b.o libc

a.out



Link Time Optimizers

� LLVM LTO

� GCC LTO

� These require that object
files be in compiler-specific
intermediate representations

� LLVM Bitcode for LLVM

� GIMPLE for GCC

� Nice case studies of Firefox
being compiled with LTO
online

� Search for “Firefox LTO

Link Time Optimization”

a.c

lto-cc

b.c

lto-cc

a.ir

lto-link

b.ir libc

a.out

https://llvm.org/docs/LinkTimeOptimization.html
https://gcc.gnu.org/onlinedocs/gccint/LTO-Overview.html


Runtime (Dynamic) optimization

� Optimization while a program is running

� Sometimes a necessity:

� E.g., JavaScript

� Sometimes called Just-in-time (JIT) compilation

� because mostly associated with JIT VMs

� Big advantage:

� Have nearly all the information required to optimize program

� Big disadvantage?



Examples of Dynamic Optimizers

� Java

� Hotspot VM

� JavaScript

� V8

� Python

� PyPy

� Your-language-here

� RPython (used to build PyPy)

� Graal and Truffle



Additional Information: Profiles

� Most optimizers only look at source code

� But additional information can help:

� What is the most common direction of this branch? (see gcc’s

builtin expect)

� What is the most likely target of this indirect function call?

� General technique: profile-based optimization or profile-guided
optimization (PGO)

� Instrument program to generate statistics (i.e. profile)

� Generate statistics on program run

� Compiler recompiles code based on gathered profile



Profile-guided Optimization using GCC

gcc -fprofile-generate program.c # instrumented executable
./program # gathers profile data
gcc -fprofile-use program.c # PGO executable

� This instruments the code to gather:

� statistics of values in expressions

� branch probabilities

� These values are gathered (“profiled”) when the program is

run

� The feedback gathered during a run can be used for:

� Inlining functions

� Laying out code

� Loop unrolling, etc.
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Getting rid of redundant calculations

ed = (a0 - a1)*(a0 - a1) + (b0 - b1)*(b0 - b1)

Optimized code sequence:

t1 = a0 - a1
t2 = t1 * t1
t3 = b0 - b1
t4 = t3 * t3
ed = t2 + t4



Where does this code arise?

� High-level languages

� AST to 3-address code generation rules

� e.g. array indexing

� x = A[i][j] + A[i][j+1]?



Array indexing example

t1 = i * dimsize(A, 1)
t2 = t1 + j
t3 = *(A + t2)

t4 = i * dimsize(A, 1)
t5 = t4 + j
t6 = t5 + 1
t7 = *(A + t6)

x = t3 + t7

dimsize(A, dim) is a function that returns an integer indicating

the size of dimension dim of array A (0 or 1).



Compiler structure

� Compilers rewrite and lower your code

� Can introduce significant redundancy in the process

� Logically cleaner (and simpler!) to reduce redundancy using
dedicated passes

� Keeps rewrites (incl. translation) simple



Value Numbering

� Value numbering is a local optimization

� Assigns numbers to each value in the basic block

� Literals

� Variables

� Expressions

� VN(x) is the the number assigned to x

� Design VN(x) such that:

� VN(x) == VN(y) if-and-only-if (iff) x == y



Example case

t1 = a0 - a1
t2 = a0 - a1
t3 = t1 * t2

t4 = b0 - b1
t5 = b0 - b1
t6 = t4 * t5

ed = t3 + t6



Example case: Assigning value numbers

t1 = a0 - a1 # 2 = 0 - 1
t2 = a0 - a1 # 2 = 0 - 1
t3 = t1 * t2 # 3 = 2 * 2

t4 = b0 - b1 # 6 = 4 - 5
t5 = b0 - b1 # 6 = 4 - 5
t6 = t4 * t5 # 7 = 6 * 6

ed = t3 + t6 # 8 = 3 + 7



After optimization

t1 = a0 - a1 # 2 = 0 - 1
t3 = t1 * t1 # 3 = 2 * 2

t4 = b0 - b1 # 6 = 4 - 5
t6 = t4 * t4 # 7 = 6 * 6

ed = t3 + t6 # 8 = 3 + 7

Algorithms in Figure 8.2, 8.4 of Cooper and Turczon



Quality of VN(x)

� What happens if your VN(x) assigns different values to
VN(x) and VN(y) when x == y?

� a = 1 * c

� b = c

� What happens if your VN(x) assigns the same value to
VN(x) and VN(y) when x 6= y?

� t1 = c + d; t2 = t1 + e

� t3 = d + e; t4 = t3 + c

� Here: is t2 equal to t4?

� (assume c, d and e are float)



Completeness and Soundness

� Let ? represent true statements, ∗ represent false statements

� Let there be a procedure P that takes a statement as input

and determines if it is true or not

� If P(?) = T and P(∗) = F for all ? and ∗, P is sound and

complete

� Usually, though P(?) =? or P(∗) =?, i.e. P is incomplete

� Additionally, if P(∗) never returns true, P is sound



Completeness and Soundness

� Completeness

� Can we prove all true statements?

� e.g., can we derive equality for all expressions that are equal?

� False Negative, we say “no”, when it is actually “yes” [Type II

error]

� Soundness

� Roughly, are all statements that have proofs actually true?

� e.g., we can never derive equality for expressions that are not

equal

� False Positive, we say “yes”, when it is actually “no” [Type I

error]



Why limit ourselves to basic blocks?

What would happen if we ran value numbering across basic blocks?
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References

� Chapter 8 of Cooper and Turczon

� Up to (but not including) 8.4.2
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