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Data flow analysis framework

� Live variable analysis

� “Is there a read of this variable along any path?”

� Reaching Definitions

� “Which definitions reach this use?”

� Available expressions

� “Is this expression calculated previously and the result still

usable?”

� Very Busy Expressions

� “Are there expressions that can be precalculated?”

� Iterative data flow analysis

� GEN, KILL, Transfer functions, Initialization
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Dominators

� A node n in the CFG dominates a node m iff:

� n is on all paths from entry to m

� by definition, a node n always dominates itself

� Dominators are a property of graphs

� I.e. has nothing to do with code in basic blocks



Example 1: Node with single predecessor

ENTRY

B1

B2

EXIT



Example 1: Node with single predecessor (Answer)

ENTRY {ENTRY}

B1 {ENTRY, B1}

B2 {ENTRY, B1, B2}

EXIT {ENTRY, B1, B2, EXIT}



Example 2: Node with multiple predecessors

ENTRY

B1

B2 B3

B4

EXIT



Example 2: Node with multiple predecessors (Answer)

ENTRY {ENTRY}

B1 {ENTRY, B1}

B2 {ENTRY, B1, B2} B3 {ENTRY, B1, B3}

B4 {ENTRY, B1, B4}

EXIT {ENTRY, B1, B4, EXIT}



Example 3: Slightly more involved example

ENTRY

B0

B1

B4

B2 B3

EXIT



Example 3: Slightly more involved example (Answer)

ENTRY {ENTRY}

B0 {ENTRY, B0}

B1 {ENTRY, B0, B1}

B4 {ENTRY, B0, B4}

B2 {ENTRY, B0, B1, B2} B3 {ENTRY, B0, B1, B3}

EXIT {ENTRY, B0, B4, EXIT}



Today

Can we use data flow analysis to identify the dominators of a node?



Data flow analysis setup

� Domain of facts?

� GEN and KILL?

� Direction of analysis?

� Merge operator?

� Initialization?



Data flow analysis Equation

DOM(n) = {n} ∪ (∩m∈pred(n)DOM(m))

� Initialization

� (for n 6= ENTRY): DOM(n) = N (where N is the set of all

nodes)

� (for n = ENTRY): DOM(n) = ENTRY



Related concept: Post-dominators

A node m is post-dominated by a node n iif:

� n appears on every path from m to EXIT.

� n post-dominates itself, by definition
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Static Single Assignment (SSA) Form

� Intermediate Representation

� Similar to 3 address code

� Each variable only written once

� Static [in source] Single [once] assignment

� SSA form can be generated from 3 address code

� Introduce φ functions

� Rename variables



Example 1: Straight-line code

y = x + 1;
x = 2;
y = x + y + 2;

gets transformed to:

y_0 = x_0 + 1
x_1 = 2;
y_1 = x_1 + y_0 + 2;

From this example, when should we rename variables?



Example 2: Branches

y = x + 1;
x = 2;

if(y > 3)
y = 3;

else
x = x * 2;

y = x + y + 2;

gets transformed to:

y_0 = x_0 + 1
x_1 = 2;

if(y_0 > 3)
y_1 = 3;

else
x_2 = x_1 * 2;

y_2 = x_2 + y_1 + 2;

Is this renaming correct?



Example 2: The CFG

ENTRY

y_0 = x_0 + 1
x_1 =  2

EXIT

y_0 > 3

y_1 = 3 x_2 = x_1 * 2

y_2 = x_2 + y_1 + 2



Example 2: Fix using φ functions

ENTRY

y_0 = x_0 + 1
x_1 =  2

EXIT

y_0 > 3

y_1 = 3 x_2 = x_1 * 2

y_2 = φ(y_0, y_1)
x_3 = φ(x_1, x_2) 
y_3 = x_3 + y_2 + 2



Simple Algorithm for constructing SSA form: 1

� Insert φ functions

� In which nodes of CFG?

� For which variables?

� Rename variables

� To what?

� Helps to think of LHS (definition) renames and RHS (use)

renames



Simple Algorithm for constructing SSA form: 2

� Insert φ functions

� In join nodes, before all other code

� For all variables defined or used in procedure

� Each φ function has one argument per incoming edge

� Use y = φ(y , y) form for variable y

� Rename variables

� To what?

� Helps to think of LHS (definition) renames and RHS (use)

renames



Simple Algorithm for constructing SSA form: 3

ENTRY

y = x + 1
x =  2

EXIT

y > 3

y = 3 x = x * 2

y = φ(y, y)
x = φ(x, x) 
y = x + y + 2



Simple Algorithm for constructing SSA form: Rename LHS

ENTRY

y_0 = x + 1
x_1 =  2

EXIT

y > 3

y_1 = 3 x_2 = x * 2

y_2 = φ(y, y)
x_3 = φ(x, x) 
y_3 = x + y + 2



Simple Algorithm for constructing SSA form: Rename RHS

� Note that in SSA form, only one definition reaches a use

(except the uses in φ)

� The arguments to φ are the definitions that reach it



Simple Algorithm for constructing SSA form: Rename RHS

ENTRY

y_0 = x_0 + 1
x_1 =  2

EXIT

y_0 > 3

y_1 = 3 x_2 = x_1 * 2

y_2 = φ(y_0, y_1)
x_3 = φ(x_1, x_2) 
y_3 = x_3 + y_2 + 2



Simple Algorithm for constructing SSA form: Renaming

� In actual compilers, renaming LHS and RHS can be done by
simply calculating reaching definitions

� Remember we had to track each definition there too (recall

y#0)

� This construction is called the maximal SSA form

� Simple to construct

� Wasteful, can introduce too many φ functions (not in our

example)



Example: Redundant φ functions

ENTRY

y_0 = x_0 + 1
x_1 =  2

EXIT

y_0 > 3

y_1 = 3 a = 3

y_2 = φ(y_0, y_1)
x_2 = φ(x_1, x_1) 
y_3 = x_2 + y_2 + 2

Here, our method constructs a redundant φ function for x 2.



Example: Redundant φ functions (now with loops)

ENTRY

y_0 = x_0 + 1
x_1 =  2

EXIT

y_1 = φ(y_0, y_4)
 x_2 = φ(x_1, x_3) 

 y_1 > 3

...

y_2 = 3 a = 3

y_3 = φ(y_1, y_2)
x_3 = φ(x_2, x_2) 
y_4 = x_3 + y_3 + 2

Here, x 3 is redundant, and its removal makes x 2 redundant.



Example: Non-redundant φ functions

ENTRY

y_0 = x_0 + 1
x_1 =  2

EXIT

y_1 = φ(y_0, y_4) 
 y_1 > 3

...

y_2 = 3 a = 3

y_3 = φ(y_1, y_2) 
 y_4 = x_1 + y_3 + 2

This gets rid of the redundant φ functions.
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