CSC2/455 Software Analysis and
Improvement
Dominators and SSA Form

Sreepathi Pai
February 2, 2022

URCS



Review

Dominator Analysis (DOM)
SSA Form

Postscript



Review



Data flow analysis framework

Live variable analysis

e ‘“Is there a read of this variable along any path?”

Reaching Definitions
e “Which definitions reach this use?”

Available expressions

e “Is this expression calculated previously and the result still
usable?”

Very Busy Expressions

e “Are there expressions that can be precalculated?”

Iterative data flow analysis
e GEN, KILL, Transfer functions, Initialization



Dominator Analysis (DOM)



Dominators

e A node n in the CFG dominates a node m iff:

e nis on all paths from entry to m
e by definition, a node n always dominates itself

e Dominators are a property of graphs

e l.e. has nothing to do with code in basic blocks



Example 1: Node with single predecessor

ENTRY

Bl

y
EXIT



Example 1: Node with single predecessor (Answer)

ENTRY {ENTRY}
Bl {ENTRY, B1}
B2 (ENTRY, Bl, B2}

EXIT {ENTRY, B1, B2, EXIT}



Example 2: Node with multiple predecessors

ENTRY
Bl
B2 B3
B4

EXIT



Example 2: Node with multiple predecessors (Answer)

ENTRY {ENTRY}
Bl {ENTRY, B1}
B2 (ENTRY, BI, B2} B3 {ENTRY, Bl, B3}
B4 {ENTRY, B, B4}

EXIT {ENTRY, B1, B4, EXIT}



Example 3: Slightly more involved example

ENTRY

y
EXIT



Example 3: Slightly more involved example (Answer)

ENTRY {ENTRY}

BO {ENTRY, B0}

B1 {ENTRY, B0, B1}

B2 {ENTRY, B0, B1, B2} B3 {ENTRY, B0, Bl, B3}

B4 {ENTRY, B0, B4}

EXIT {ENTRY, B0, B4, EXIT}



Can we use data flow analysis to identify the dominators of a node?



Data flow analysis setup

Domain of facts?
GEN and KILL?

Direction of analysis?

Merge operator?

Initialization?



Data flow analysis Equation

DOM(”) = {n} U (mmepred(n)DOM(m))

e Initialization

e (for n # ENTRY): DOM(n) = N (where N is the set of all
nodes)
o (for n=ENTRY): DOM(n) = ENTRY



Related concept: Post-dominators

A node m is post-dominated by a node n iif:

e n appears on every path from m to EXIT.

e n post-dominates itself, by definition



SSA Form



Static Single Assignment (SSA) Form

e Intermediate Representation
e Similar to 3 address code
e Each variable only written once
e Static [in source| Single [once] assignment
e SSA form can be generated from 3 address code

e Introduce ¢ functions
e Rename variables



Example 1: Straight-line code

y=x+1;
X = 2;
y=x+y+2

gets transformed to:

x 0+ 1
2;
x_1+ y_0+ 2;

== O
W n

<M<

From this example, when should we rename variables?



Example 2: Branches

y=x+ty+2;

gets transformed to:

y_0
x_1

non
N
)

if(y_0 > 3)
y-1=3;

else
x_2

x_1 % 2;

y_2 =x_2 +y_1+ 2;

Is this renaming correct?



Example 2: The CFG

v.0=x0+1
x 1= 2

\

y.0 >3
y.1=23 x 2 =x1%*2

N/

v2=x2+y1l+2

@




functions

Example 2: Fix using

y2=oly0, v
T2 D
y3=x3+y2+2




Simple Algorithm for constructing SSA form: 1

e Insert ¢ functions
e In which nodes of CFG?
e For which variables?

e Rename variables

e To what?
e Helps to think of LHS (definition) renames and RHS (use)
renames



Simple Algorithm for constructing SSA form: 2

e Insert ¢ functions
e In join nodes, before all other code
e For all variables defined or used in procedure
e Each ¢ function has one argument per incoming edge
e Use y = ¢(y,y) form for variable y

e Rename variables

e To what?
e Helps to think of LHS (definition) renames and RHS (use)
renames



Simple Algorithm for constructing SSA form: 3




Simple Algorithm for constructing SSA form: Rename LHS




Simple Algorithm for constructing SSA form: Rename RHS

e Note that in SSA form, only one definition reaches a use
(except the uses in ¢)

e The arguments to ¢ are the definitions that reach it



Simple Algorithm for constructing SSA form: Rename RHS




Simple Algorithm for constructing SSA form: Renaming

e In actual compilers, renaming LHS and RHS can be done by
simply calculating reaching definitions

e Remember we had to track each definition there too (recall
y#0)
e This construction is called the maximal SSA form

e Simple to construct
e Wasteful, can introduce too many ¢ functions (not in our
example)



Example: Redundant ¢ functions

Here, our method constructs a redundant ¢ function for x_2.



Example: Redundant ¢ functions (now with loops)

ENTRY

Here, x_3 is redundant, and its removal makes x_2 redundant.



Example: Non-redundant ¢ functions

_Z—
. ol ¥

y.1=o¢(yo0, y4)

This gets rid of the redundant ¢ functions.



Postscript



References

e Chapter 9 of Cooper and Turczon

e Section 9.2.1
e Section 9.3



	Review
	Dominator Analysis (DOM)
	SSA Form
	Postscript

