
CSC2/455 Software Analysis and

Improvement

Dominators and SSA Form

Sreepathi Pai

February 2, 2022

URCS

Outline

Review

Dominator Analysis (DOM)

SSA Form

Postscript

Outline

Review

Dominator Analysis (DOM)

SSA Form

Postscript

Data flow analysis framework

� Live variable analysis

� “Is there a read of this variable along any path?”

� Reaching Definitions

� “Which definitions reach this use?”

� Available expressions

� “Is this expression calculated previously and the result still

usable?”

� Very Busy Expressions

� “Are there expressions that can be precalculated?”

� Iterative data flow analysis

� GEN, KILL, Transfer functions, Initialization

Outline

Review

Dominator Analysis (DOM)

SSA Form

Postscript

Dominators

� A node n in the CFG dominates a node m iff:

� n is on all paths from entry to m

� by definition, a node n always dominates itself

� Dominators are a property of graphs

� I.e. has nothing to do with code in basic blocks

Example 1: Node with single predecessor

ENTRY

B1

B2

EXIT

Example 1: Node with single predecessor (Answer)

ENTRY {ENTRY}

B1 {ENTRY, B1}

B2 {ENTRY, B1, B2}

EXIT {ENTRY, B1, B2, EXIT}

Example 2: Node with multiple predecessors

ENTRY

B1

B2 B3

B4

EXIT

Example 2: Node with multiple predecessors (Answer)

ENTRY {ENTRY}

B1 {ENTRY, B1}

B2 {ENTRY, B1, B2} B3 {ENTRY, B1, B3}

B4 {ENTRY, B1, B4}

EXIT {ENTRY, B1, B4, EXIT}

Example 3: Slightly more involved example

ENTRY

B0

B1

B4

B2 B3

EXIT

Example 3: Slightly more involved example (Answer)

ENTRY {ENTRY}

B0 {ENTRY, B0}

B1 {ENTRY, B0, B1}

B4 {ENTRY, B0, B4}

B2 {ENTRY, B0, B1, B2} B3 {ENTRY, B0, B1, B3}

EXIT {ENTRY, B0, B4, EXIT}

Today

Can we use data flow analysis to identify the dominators of a node?

Data flow analysis setup

� Domain of facts?

� GEN and KILL?

� Direction of analysis?

� Merge operator?

� Initialization?

Data flow analysis Equation

DOM(n) = {n} ∪ (∩m∈pred(n)DOM(m))

� Initialization

� (for n 6= ENTRY): DOM(n) = N (where N is the set of all

nodes)

� (for n = ENTRY): DOM(n) = ENTRY

Related concept: Post-dominators

A node m is post-dominated by a node n iif:

� n appears on every path from m to EXIT.

� n post-dominates itself, by definition

Outline

Review

Dominator Analysis (DOM)

SSA Form

Postscript

Static Single Assignment (SSA) Form

� Intermediate Representation

� Similar to 3 address code

� Each variable only written once

� Static [in source] Single [once] assignment

� SSA form can be generated from 3 address code

� Introduce φ functions

� Rename variables

Example 1: Straight-line code

y = x + 1;
x = 2;
y = x + y + 2;

gets transformed to:

y_0 = x_0 + 1
x_1 = 2;
y_1 = x_1 + y_0 + 2;

From this example, when should we rename variables?

Example 2: Branches

y = x + 1;
x = 2;

if(y > 3)
y = 3;

else
x = x * 2;

y = x + y + 2;

gets transformed to:

y_0 = x_0 + 1
x_1 = 2;

if(y_0 > 3)
y_1 = 3;

else
x_2 = x_1 * 2;

y_2 = x_2 + y_1 + 2;

Is this renaming correct?

Example 2: The CFG

ENTRY

y_0 = x_0 + 1
x_1 = 2

EXIT

y_0 > 3

y_1 = 3 x_2 = x_1 * 2

y_2 = x_2 + y_1 + 2

Example 2: Fix using φ functions

ENTRY

y_0 = x_0 + 1
x_1 = 2

EXIT

y_0 > 3

y_1 = 3 x_2 = x_1 * 2

y_2 = φ(y_0, y_1)
x_3 = φ(x_1, x_2)
y_3 = x_3 + y_2 + 2

Simple Algorithm for constructing SSA form: 1

� Insert φ functions

� In which nodes of CFG?

� For which variables?

� Rename variables

� To what?

� Helps to think of LHS (definition) renames and RHS (use)

renames

Simple Algorithm for constructing SSA form: 2

� Insert φ functions

� In join nodes, before all other code

� For all variables defined or used in procedure

� Each φ function has one argument per incoming edge

� Use y = φ(y , y) form for variable y

� Rename variables

� To what?

� Helps to think of LHS (definition) renames and RHS (use)

renames

Simple Algorithm for constructing SSA form: 3

ENTRY

y = x + 1
x = 2

EXIT

y > 3

y = 3 x = x * 2

y = φ(y, y)
x = φ(x, x)
y = x + y + 2

Simple Algorithm for constructing SSA form: Rename LHS

ENTRY

y_0 = x + 1
x_1 = 2

EXIT

y > 3

y_1 = 3 x_2 = x * 2

y_2 = φ(y, y)
x_3 = φ(x, x)
y_3 = x + y + 2

Simple Algorithm for constructing SSA form: Rename RHS

� Note that in SSA form, only one definition reaches a use

(except the uses in φ)

� The arguments to φ are the definitions that reach it

Simple Algorithm for constructing SSA form: Rename RHS

ENTRY

y_0 = x_0 + 1
x_1 = 2

EXIT

y_0 > 3

y_1 = 3 x_2 = x_1 * 2

y_2 = φ(y_0, y_1)
x_3 = φ(x_1, x_2)
y_3 = x_3 + y_2 + 2

Simple Algorithm for constructing SSA form: Renaming

� In actual compilers, renaming LHS and RHS can be done by
simply calculating reaching definitions

� Remember we had to track each definition there too (recall

y#0)

� This construction is called the maximal SSA form

� Simple to construct

� Wasteful, can introduce too many φ functions (not in our

example)

Example: Redundant φ functions

ENTRY

y_0 = x_0 + 1
x_1 = 2

EXIT

y_0 > 3

y_1 = 3 a = 3

y_2 = φ(y_0, y_1)
x_2 = φ(x_1, x_1)
y_3 = x_2 + y_2 + 2

Here, our method constructs a redundant φ function for x 2.

Example: Redundant φ functions (now with loops)

ENTRY

y_0 = x_0 + 1
x_1 = 2

EXIT

y_1 = φ(y_0, y_4)
 x_2 = φ(x_1, x_3)

 y_1 > 3

...

y_2 = 3 a = 3

y_3 = φ(y_1, y_2)
x_3 = φ(x_2, x_2)
y_4 = x_3 + y_3 + 2

Here, x 3 is redundant, and its removal makes x 2 redundant.

Example: Non-redundant φ functions

ENTRY

y_0 = x_0 + 1
x_1 = 2

EXIT

y_1 = φ(y_0, y_4)
 y_1 > 3

...

y_2 = 3 a = 3

y_3 = φ(y_1, y_2)
 y_4 = x_1 + y_3 + 2

This gets rid of the redundant φ functions.

Outline

Review

Dominator Analysis (DOM)

SSA Form

Postscript

References

� Chapter 9 of Cooper and Turczon

� Section 9.2.1

� Section 9.3

	Review
	Dominator Analysis (DOM)
	SSA Form
	Postscript

