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Dominators

� A node n in the CFG dominates a node m iff:

� n is on all paths from entry to m

� by definition, a node n always dominates itself

� if n 6= m, then n strictly dominates m

� Computed using a dataflow-style analysis

� Each node annotated with a set of its dominators



Static Single Assignment Form

� Simple algorithm to generate SSA form

� Introduce φ functions

� Rename variables using Reaching Definitions

� Algorithm can generate excessive φ functions

� TODAY: Use dominance frontiers to place the minimal

number of φ functions

� Also today: Removing φ functions

� Machines don’t support φ functions, so we must emulate them



Maximal SSA Form

� Insert φ nodes for each definition at every join node

� Rename LHS

� Rename RHS using reaching definitions



Reducing the number of phi nodes

� Why insert φ nodes at only join nodes?

� Can we skip inserting φ nodes for a definition at some join

node?
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Dominance Frontiers

� The dominance frontier of a node n (DF(n)) is a set of nodes

� A node m ∈ DF(n) iff:

� n does not strictly dominate m

� n dominates q where q ∈ pred(m)

� Note that dominance frontiers only contain join nodes

� I.e. nodes with multiple predecessors

� Computing the dominance frontier of each node:

� Iterative Data-flow analysis?



Dominance Frontiers: Direct algorithm

Direct calculation of dominance frontiers using dominator trees.



Immediate Dominators

� The immediate dominator of
a node m (IDOM(m)) is the
node n:

� such that n strictly

dominates m, and

� n does not strictly

dominate o where

o ∈ (DOM(m)− {m})
� in some sense, n is the

“closest” dominator in

the CFG to m.

� By definition, ENTRY has

no immediate dominator

ENTRY {ENTRY}

B1 {ENTRY, B1}

B2 {ENTRY, B1, B2}

EXIT {ENTRY, B1, B2, EXIT}



Not Strictly Dominates

� n strictly dominates m

� SDOM(n,m) = n ∈ DOM(m) ∧ n 6= m

� n does not strictly dominate m

� ¬SDOM(n,m) = n 6∈ DOM(m) ∨ n = m



Dominator Tree

� Note that each node in the
CFG can have only one
immediate dominator

� Can you see why?

� Create a graph G = (V ,E ),
where:

� V is the set of basic

blocks

� There is an edge (n,m) in

E if n is the immediate

dominator of m (i.e.

IDOM(m) = n)

ENTRY

B1

B2

EXIT



Example: CFG and its dominator tree

ENTRY

B0

B1

B2

B3

B7

B4 B5

B6

EXIT

ENTRY

B0

B1

B2 B3 B7

B4 B5 B6 EXIT



Computing the dominance frontier

� Find all join nodes in CFG, e.g. j

� For all nodes n that dominate predecessors of j (in the CFG)

� If n does not strictly dominate j , add j to DF(n)

� This last step can be operationalized over all predecessors p of
j in the CFG :

� Start traversing the dominator tree at p

� If p is IDOM(j), stop. Otherwise add j to DF (p)

� Repeat by moving up the dominator tree until you reach

IDOM(j)



Example: Non-redundant φ functions

ENTRY

y_0 = x_0 + 1
x_1 =  2

EXIT

y_1 = φ(y_0, y_4) 
 y_1 > 3

...

y_2 = 3 a = 3

y_3 = φ(y_1, y_2) 
 y_4 = x_1 + y_3 + 2



Placing φ functions

� For each definition d in basic block n:

� Place a φ function for d in all nodes m where m ∈ DF (n)

� Note that each φ function is also a definition!

� Repeat, until no more φ functions need to be inserted

� This is the minimal number of φ functions for a definition d
structurally

� Can we further reduce the overall number of φ functions?

� (Figure 9.9 in Cooper and Turczon)



Other optimizations

� Dead definitions

� Definitions that are not read (i.e. overwritten) do not need φ

functions

� Two forms:

� Semi-pruned SSA form, using “globals” names (those variables

that are live in to a block)

� Pruned SSA form, using Liveout information
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Renaming variables

� SSA form introduced “subscripts” for each variable

� Should we drop them when generating code?

a_0 = x_0 + y_0
b_0 = a_0
a_1 = 17
c_0 = a_0



Problem with dropping subscripts

a = x + y
b = a
a = 17
c = a # WRONG!



Handling subscripts

� Each definition becomes a new variable

� I.e. Do NOT drop subscripts

� Preserves data dependences

� Esp. important when we aggressively move code from basic

blocks (e.g. very busy expressions, loop invariant code motion,

etc.)



Code for φ functions

� Introduce copies along each incoming edge to a join node

i_2 = 1

i_4 = φ(i_2, i_3) 
 ...

i_3 = a + b



Inserting appropriate copies along incoming edges

i_2 = 1
i_4 = i_2

...

i_3 = a + b
i_4 = i_3



Critical edges

� Executing φ functions by inserting copies into predecessor

blocks is not always correct

� If such a predecessor block has multiple successors, then the φ
function may execute when it shouldn’t

� This may be harmless, but not always

� Edges connecting such predecessors to the block containing

the φ function are called critical edges



Critical Edges: Example

i_2 = 1
i_4 = i_2

...A...

i_3 = a + b
i_4 = i_3

...B...



Splitting critical edges

i_2 = 1
i_4 = i_2

...A...

i_3 = a + b

...B... i_4 = i_3

� Such edges need to be split by inserting a block on that edge

� See the discussion in Cooper and Turczon for more details and

an example
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Purely Functional Programs

� Everything is a value

� No “assignment”, just binding values to names

� No control flow such as jumps

� Must be emulated using functions



Example: Factorial

def fact(N):
res = 1
for i in range(1, N+1):

res *= i

return res

def fac(N):
return 1 if N <= 1 else N * fac(N - 1)



Factorial: 3 Address Code

def fact(N):
res = 1
i = 1
if i > N goto loop_end

loop_head:
res = res * i
i = i + 1
if i <= N goto loop_head

loop_end:
return res



Factorial: SSA form

def fact(N):
res_0 = 1
i_0 = 1
if i_0 > N goto loop_end

loop_head:
res_1 = phi(res_0, res_2)
i_1 = phi(i_0, i_2)

res_2 = res_1 * i_1
i_2 = i_1 + 1
if i_2 <= N goto loop_head

loop_end:
res_3 = phi(res_0, res_2)
return res_3

ENTRY

res_0 = 1
i_0 = 1

i_0 > N

res_1 = phi(res_0, res_2)
i_1 = phi(i_0, i_2)
res_2 = res_1 * i_1

 i_2 = i_1 + 1

false

res_3 = phi(res_0, res_2)
return res_3

i_2 <= N

EXIT



Factorial: Function Conversion

def fact(N):
res_0 = 1
i_0 = 1

def loop_head(res_1, i_1):
res_2 = res_1 * i_1
i_2 = i_1 + 1
return loop_head(res_2, i_2) if i_2 <= N else loop_end(res_2)

def loop_end(res_3):
return res_3

return loop_end(res_0) if i_0 > N else loop_head(res_0, i_0)

� Each basic block is converted to a function

� Parameters to this function are the LHS of the φ functions in

that BB

� Arguments picked from arguments of φ function depending on

the path the BB was on.
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References

� Chapter 9 of Cooper and Turczon

� Section 9.2.1

� Section 9.3

� Optional:

� Various authors, The SSA book

� Andrew W. Appel, SSA is functional programming

https://pfalcon.github.io/ssabook/latest/book-full.pdf
https://dl.acm.org/doi/10.1145/278283.278285
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