
CSC2/455 Software Analysis and

Improvement

Dominators and SSA Form - II

Sreepathi Pai

February 6, 2022

URCS

Outline

Review

Dominance Frontiers and Dominator Trees

Emitting code for SSA form

The SSA Form and Functional Programming

Postscript

Outline

Review

Dominance Frontiers and Dominator Trees

Emitting code for SSA form

The SSA Form and Functional Programming

Postscript

Dominators

� A node n in the CFG dominates a node m iff:

� n is on all paths from entry to m

� by definition, a node n always dominates itself

� if n 6= m, then n strictly dominates m

� Computed using a dataflow-style analysis

� Each node annotated with a set of its dominators

Static Single Assignment Form

� Simple algorithm to generate SSA form

� Introduce φ functions

� Rename variables using Reaching Definitions

� Algorithm can generate excessive φ functions

� TODAY: Use dominance frontiers to place the minimal

number of φ functions

� Also today: Removing φ functions

� Machines don’t support φ functions, so we must emulate them

Maximal SSA Form

� Insert φ nodes for each definition at every join node

� Rename LHS

� Rename RHS using reaching definitions

Reducing the number of phi nodes

� Why insert φ nodes at only join nodes?

� Can we skip inserting φ nodes for a definition at some join

node?

Outline

Review

Dominance Frontiers and Dominator Trees

Emitting code for SSA form

The SSA Form and Functional Programming

Postscript

Dominance Frontiers

� The dominance frontier of a node n (DF(n)) is a set of nodes

� A node m ∈ DF(n) iff:

� n does not strictly dominate m

� n dominates q where q ∈ pred(m)

� Note that dominance frontiers only contain join nodes

� I.e. nodes with multiple predecessors

� Computing the dominance frontier of each node:

� Iterative Data-flow analysis?

Dominance Frontiers: Direct algorithm

Direct calculation of dominance frontiers using dominator trees.

Immediate Dominators

� The immediate dominator of
a node m (IDOM(m)) is the
node n:

� such that n strictly

dominates m, and

� n does not strictly

dominate o where

o ∈ (DOM(m)− {m})
� in some sense, n is the

“closest” dominator in

the CFG to m.

� By definition, ENTRY has

no immediate dominator

ENTRY {ENTRY}

B1 {ENTRY, B1}

B2 {ENTRY, B1, B2}

EXIT {ENTRY, B1, B2, EXIT}

Not Strictly Dominates

� n strictly dominates m

� SDOM(n,m) = n ∈ DOM(m) ∧ n 6= m

� n does not strictly dominate m

� ¬SDOM(n,m) = n 6∈ DOM(m) ∨ n = m

Dominator Tree

� Note that each node in the
CFG can have only one
immediate dominator

� Can you see why?

� Create a graph G = (V ,E),
where:

� V is the set of basic

blocks

� There is an edge (n,m) in

E if n is the immediate

dominator of m (i.e.

IDOM(m) = n)

ENTRY

B1

B2

EXIT

Example: CFG and its dominator tree

ENTRY

B0

B1

B2

B3

B7

B4 B5

B6

EXIT

ENTRY

B0

B1

B2 B3 B7

B4 B5 B6 EXIT

Computing the dominance frontier

� Find all join nodes in CFG, e.g. j

� For all nodes n that dominate predecessors of j (in the CFG)

� If n does not strictly dominate j , add j to DF(n)

� This last step can be operationalized over all predecessors p of
j in the CFG :

� Start traversing the dominator tree at p

� If p is IDOM(j), stop. Otherwise add j to DF (p)

� Repeat by moving up the dominator tree until you reach

IDOM(j)

Example: Non-redundant φ functions

ENTRY

y_0 = x_0 + 1
x_1 = 2

EXIT

y_1 = φ(y_0, y_4)
 y_1 > 3

...

y_2 = 3 a = 3

y_3 = φ(y_1, y_2)
 y_4 = x_1 + y_3 + 2

Placing φ functions

� For each definition d in basic block n:

� Place a φ function for d in all nodes m where m ∈ DF (n)

� Note that each φ function is also a definition!

� Repeat, until no more φ functions need to be inserted

� This is the minimal number of φ functions for a definition d
structurally

� Can we further reduce the overall number of φ functions?

� (Figure 9.9 in Cooper and Turczon)

Other optimizations

� Dead definitions

� Definitions that are not read (i.e. overwritten) do not need φ

functions

� Two forms:

� Semi-pruned SSA form, using “globals” names (those variables

that are live in to a block)

� Pruned SSA form, using Liveout information

Outline

Review

Dominance Frontiers and Dominator Trees

Emitting code for SSA form

The SSA Form and Functional Programming

Postscript

Renaming variables

� SSA form introduced “subscripts” for each variable

� Should we drop them when generating code?

a_0 = x_0 + y_0
b_0 = a_0
a_1 = 17
c_0 = a_0

Problem with dropping subscripts

a = x + y
b = a
a = 17
c = a # WRONG!

Handling subscripts

� Each definition becomes a new variable

� I.e. Do NOT drop subscripts

� Preserves data dependences

� Esp. important when we aggressively move code from basic

blocks (e.g. very busy expressions, loop invariant code motion,

etc.)

Code for φ functions

� Introduce copies along each incoming edge to a join node

i_2 = 1

i_4 = φ(i_2, i_3)
 ...

i_3 = a + b

Inserting appropriate copies along incoming edges

i_2 = 1
i_4 = i_2

...

i_3 = a + b
i_4 = i_3

Critical edges

� Executing φ functions by inserting copies into predecessor

blocks is not always correct

� If such a predecessor block has multiple successors, then the φ
function may execute when it shouldn’t

� This may be harmless, but not always

� Edges connecting such predecessors to the block containing

the φ function are called critical edges

Critical Edges: Example

i_2 = 1
i_4 = i_2

...A...

i_3 = a + b
i_4 = i_3

...B...

Splitting critical edges

i_2 = 1
i_4 = i_2

...A...

i_3 = a + b

...B... i_4 = i_3

� Such edges need to be split by inserting a block on that edge

� See the discussion in Cooper and Turczon for more details and

an example

Outline

Review

Dominance Frontiers and Dominator Trees

Emitting code for SSA form

The SSA Form and Functional Programming

Postscript

Purely Functional Programs

� Everything is a value

� No “assignment”, just binding values to names

� No control flow such as jumps

� Must be emulated using functions

Example: Factorial

def fact(N):
res = 1
for i in range(1, N+1):

res *= i

return res

def fac(N):
return 1 if N <= 1 else N * fac(N - 1)

Factorial: 3 Address Code

def fact(N):
res = 1
i = 1
if i > N goto loop_end

loop_head:
res = res * i
i = i + 1
if i <= N goto loop_head

loop_end:
return res

Factorial: SSA form

def fact(N):
res_0 = 1
i_0 = 1
if i_0 > N goto loop_end

loop_head:
res_1 = phi(res_0, res_2)
i_1 = phi(i_0, i_2)

res_2 = res_1 * i_1
i_2 = i_1 + 1
if i_2 <= N goto loop_head

loop_end:
res_3 = phi(res_0, res_2)
return res_3

ENTRY

res_0 = 1
i_0 = 1

i_0 > N

res_1 = phi(res_0, res_2)
i_1 = phi(i_0, i_2)
res_2 = res_1 * i_1

 i_2 = i_1 + 1

false

res_3 = phi(res_0, res_2)
return res_3

i_2 <= N

EXIT

Factorial: Function Conversion

def fact(N):
res_0 = 1
i_0 = 1

def loop_head(res_1, i_1):
res_2 = res_1 * i_1
i_2 = i_1 + 1
return loop_head(res_2, i_2) if i_2 <= N else loop_end(res_2)

def loop_end(res_3):
return res_3

return loop_end(res_0) if i_0 > N else loop_head(res_0, i_0)

� Each basic block is converted to a function

� Parameters to this function are the LHS of the φ functions in

that BB

� Arguments picked from arguments of φ function depending on

the path the BB was on.

Outline

Review

Dominance Frontiers and Dominator Trees

Emitting code for SSA form

The SSA Form and Functional Programming

Postscript

References

� Chapter 9 of Cooper and Turczon

� Section 9.2.1

� Section 9.3

� Optional:

� Various authors, The SSA book

� Andrew W. Appel, SSA is functional programming

https://pfalcon.github.io/ssabook/latest/book-full.pdf
https://dl.acm.org/doi/10.1145/278283.278285

	Review
	Dominance Frontiers and Dominator Trees
	Emitting code for SSA form
	The SSA Form and Functional Programming
	Postscript

