
CSC2/455 Software Analysis and

Improvement

Foundations of Data Flow Analysis

Sreepathi Pai

February 9, 2022

URCS

Outline

Review

The Meaning of It All

Data flow analysis

Postscript

Outline

Review

The Meaning of It All

Data flow analysis

Postscript

Analyses so far

� Live variables

� Available expressions

� Very busy expressions

� Dominators

� Dominance frontiers (direct)

� Solved using Iterative data flow analysis

Outline

Review

The Meaning of It All

Data flow analysis

Postscript

The Reaching Definitions Problem

if (x > 5)
x#0 = 5;

else
x#1 = 0;

if (x)
x#2 = 3;

u = x;

Which definitions reach u = x?

The Ideal Solution: Example

Compute reaching definitions for each possible execution path to u

= x, and combine the results using ∪:

Execution Path 1

x#0 = 5
x#2 = 3
u = x

Execution Path 2

x#1 = 0
u = x

So only {x#2, x#1} reach u.

The Ideal Solution

� Let P = ENTRY ,B0,B1, ...,Bk be an execution path to the

entry of block Bk

� Let fP be the composite transfer function we want to evaluate

� The ideal solution is defined as the meet (∧) over all P

IDEAL[Bk] =
∧

P is path from ENTRY to Bk

fP(P)

Note, for reaching definitions ∧ = ∪.

What is the problem with trying to find all execution paths?

Meet over (all possible flow-graph) paths (MOP)

� IDEAL can be undecidable

� “does this loop on the

path to Bk terminate?”

� MOP approximates IDEAL

� Only all paths in control

flow graph are explored

� Calculate f over all paths in

the CFG, one path at a time.

� Combine using ∧, as in

IDEAL

ENTRY

x > 5

EXIT

x = 5 x = 0

x

x = 3

u = x

MOP solution

ENTRY

x > 5

EXIT

x#0 = 5 x#1 = 0

x

x#2 = 3

u = x {x#2}

ENTRY

x > 5

EXIT

x#0 = 5 x#1 = 0

x

x#2 = 3

u = x {x#1}

ENTRY

x > 5

EXIT

x#0 = 5 x#1 = 0

x

x#2 = 3

u = x {x#0}

ENTRY

x > 5

EXIT

x#0 = 5 x#1 = 0

x

x#2 = 3

u = x {x#2}

� The MOP solution is {x#0, x#1, x#2}
� Note IDEAL ⊂ MOP

Maximum Fixed Point (MFP)

� CFGs with cycles will have an unbounded number of paths

� Hence, our use of the iterative dataflow analysis framework

� Compute function f at individual basic blocks (not on paths)

� Use meet operator at join nodes (or “confluence” points)

� Terminate when functions reach a fixpoint

� (Ignore “maximum” for now)

MFP solution

� MFP solution is {x#0,
x#1, x#2}

� In this case, MFP = MOP

ENTRY

x > 5

EXIT

x#0 = 5 x#1 = 0

x

{x#0} {x#1}

x#2 = 3

{x#0,x#1}

u = x

{x#0,x#1}

{x#2}

Relationship between IDEAL, MOP and MFP

� For reaching definitions (and this example):

� IDEAL ⊂ MOP = MFP

� Precision also decreases from IDEAL to MFP

� Can we generalize?

� IDEAL ⊆ MOP ⊆ MFP

� When would it be a proper subset (⊂)?

� When would it be identical (=)?

� Do our conclusions apply only to reaching definitions?

Outline

Review

The Meaning of It All

Data flow analysis

Postscript

Recap: Building blocks of a Data Flow Analysis

This slide intentionally blank.

More formally

� A data flow analysis is a (D,V ,∧,F) where:

� D is direction (backwards or forwards)

� V is the domain of solutions (i.e. set) to the dataflow problem

� ∧ is the binary meet operator over V

� F : V → V is the family of transfer functions

� V and ∧ must define a semilattice

Semilattice

� A semilattice is a lattice with only a meet ∧ operator (or a
join [∨] operator)

� A lattice has both

� A semilattice (V ,∧) is a set V and an operator ∧ such that:

� x ∧ x = x (idempotent)

� x ∧ y = y ∧ x (commutative)

� (x ∧ y) ∧ z = x ∧ (y ∧ z) (associative)

� Two elements of V are denoted as > (top) and ⊥ (bottom)
such that:

� ∀x ∈ V > ∧ x = x

� ∀x ∈ V ⊥ ∧ x = ⊥

Reaching Definitions

� D = ?

� V = ?

� ∧ = ?

� > = ?

� ⊥ = ?

Reaching Definitions

� D = forward

� V = powerset of definitions

� ∧ = ∪
� > = ∅ (no definitions)

� ⊥ = U (all definitions)

Semilattice for our Reaching Definitions Example

{} (⊤)

{x#0} {x#1} {x#2}

{x#0, x#1} {x#0, x#2} {x#1, x#2}

{x#0, x#1, x#2} (⊥)

Partial Orders

� A semilattice (V ,∧) also induces a partial order among

elements of V

� A partial order ≤ for values x , y , z ∈ V has the following
properties:

� x ≤ x (reflexive)

� if x ≤ y and y ≤ x , then x = y (anti-symmetric)

� if x ≤ y and y ≤ z , then x ≤ z (transitive)

� A partial order ≤ for a semilattice is defined as:

� x ≤ y if and only if x ∧ y = x

� The pair (V ,≤) is known as a partially ordered set or poset

Partial Order Example

{} (⊤)

{x#0} {x#1} {x#2}

{x#0, x#1} {x#0, x#2} {x#1, x#2}

{x#0, x#1, x#2} (⊥)

� What is the partial order (x ≤ y iff x ∧ y = x) between:

� {x#0} and {x#0, x#1}?
� {x#0} and {x#1}?

� What is the name of partial order when:

� ∧ = ∪? (i.e. x ∪ y = x)

� ∧ = ∩?

A relationship between ∧ and ≤: the glb

� Informally, the greatest lower bound (glb) is the first element
≤ than both x and y

� it can be x or y as well (note = in ≤)

� The greatest lower bound g of x and y ∈ V is

� g = x ∧ y

� See the textbook for the definition and proof

Putting it all together

Think about how values at each basic block change we go about

performing an iterative data flow analysis, especially how the

values are related to each other in the lattice.

{} (⊤)

{x#0} {x#1} {x#2}

{x#0, x#1} {x#0, x#2} {x#1, x#2}

{x#0, x#1, x#2} (⊥)

Transfer functions

� F : V → V , F is a set of functions f

� f (x) = G ∪ (x − K)

� F must satisfy two conditions:

� must contain an identity function: I (x) = x

� must be closed under composition h(x) = f (g(x)) is also in F

� E.g. reaching definitions transfer functions satisfy these
conditions

� See textbook for proof.

Monotone Framework

� A given (D,V ,∧,F) is monotone if for all x , y ∈ V , and
f ∈ F :

� x ≤ y → f (x) ≤ f (y)

� equivalently, x ≤ y → f (x ∧ y) ≤ f (x) ∧ f (y)

� In addition, the framework is distributive if:

� f (x ∧ y) = f (x) ∧ f (y)

� Note that these properties do not necessarily arise
automatically, F must be designed to have these properties

� And proofs must be written to show that F does.

General Iterative Algorithm

forwards(IN, OUT, meet, top, v_entry, f_transfer)
OUT[entry] = v_entry

for each basic block B except ENTRY:
OUT[B] = top

do {
for each basic block B except ENTRY:

this calculates the meet over predecessors, /\p OUT[p]
IN[B] = reduce(meet, [OUT[p] for p in B.predecessors])
OUT[B] = f_transfer(IN[B])

} while(some OUT changes value)

� Does this calculate the solution to the dataflow problem?

� Does this algorithm terminate?

� Does this algorithm calculate the maximum fixed point – i.e.

the most precise solution admissible?

Next class

� Proofs that explore the three questions

� Relationships between IDEAL, MOP and MFP in terms of the

framework

� Examples of:

� a non-distributive framework (read Dragon 9.4, Constant

Propagation)

� lattices containing infinite values

� possibly some proof writing exercises (read 9.3)

Outline

Review

The Meaning of It All

Data flow analysis

Postscript

References

� Chapter 9 of the Dragon book

� Section 9.3

� 4xx students are expected to be able to solve exercises therein

	Review
	The Meaning of It All
	Data flow analysis
	Postscript

