
CSC2/455 Software Analysis and

Improvement

Foundations of Data Flow Analysis - II

Sreepathi Pai

February 14, 2022

URCS

Outline

Review

Proofs

Constant Propagation

Postscript

Outline

Review

Proofs

Constant Propagation

Postscript

Part I of Foundations

� Methods to solve dataflow analysis equations

� IDEAL

� Meet over paths (MOP)

� Maximum Fixed Point (MFP)

� IDEAL ⊆ MOP ⊆ MFP

� (Semi)lattice-based framework

� (D,V ,∧,F), dataflow analysis

� (V ,∧), meet semilattice

� (V ,≤), partial order, where x ≤ y iff x ∧ y = x

� Monotone framework

� Greatest Lower Bound

� z ≤ x and z ≤ y , where z = x ∧ y

Monotone Framework

� A given (D,V ,∧,F) is monotone if for all x , y ∈ V , and
f ∈ F :

� x ≤ y → f (x) ≤ f (y)

� equivalently, x ≤ y → f (x ∧ y) ≤ f (x) ∧ f (y)

� The proof of equivalence is in the textbook.

� In addition, the framework is distributive if:

� f (x ∧ y) = f (x) ∧ f (y)

� Note that these properties do not necessarily arise
automatically, F must be designed to have these properties

� And proofs must be written to show that F does.

� We’ll see this for a complicated example today.

General Iterative Algorithm

forwards(IN, OUT, meet, top, v_entry, f_transfer)
OUT[entry] = v_entry

for each basic block B except ENTRY:
OUT[B] = top

do {
for each basic block B except ENTRY:

this calculates the meet over predecessors, /\p OUT[p]
IN[B] = reduce(meet, [OUT[p] for p in B.predecessors])
OUT[B] = f_transfer(IN[B])

} while(some OUT changes value)

� Does this calculate the solution to the dataflow problem?

� Does this algorithm terminate?

� Does this algorithm calculate the maximum fixed point – i.e.

the most precise solution admissible?

This class

� Proofs that answer these three questions

� Relationships between IDEAL, MOP and MFP in terms of the

framework

� Examples of:

� a non-distributive framework (from Dragon 9.4, Constant

Propagation)

� lattices containing infinite values

� possibly some proof writing exercises (from Dragon 9.3)

Outline

Review

Proofs

Constant Propagation

Postscript

Proof #1

do {
for each basic block B except ENTRY:

this calculates the meet over predecessors, /\p OUT[p]
IN[B] = reduce(meet, [OUT[p] for p in B.predecessors])
OUT[B] = f_transfer(IN[B])

} while(some OUT changes value)

The iterative algorithm computes the solution to the dataflow

problem.

� The iterative algorithm performs an unbounded number of

iterations as long as IN and OUT change

� When it terminates, IN and OUT have not changed for an

iteration

� The values of IN and OUT therefore satisfy the equations

� Hence they are solutions of the dataflow problem

Proof #2

The iterative algorithm terminates (i.e. converges to a fix point).

� When we apply the ∧ operator, we obtain the glb

� i.e. z = x ∧ y and z ≤ x and z ≤ y

� Since the framework is monotone:

� f (x) ≤ f (y) if x ≤ y

� i.e. OUT values are no greater than the IN values

� At each step, these values decrease or remain the same

� When they all remain the same, we terminate

� If values decrease, recall the lattice has finite height

� Implies a finite number of steps before we reach ⊥
� x ∧ ⊥ = ⊥ and f (⊥) = ⊥ (i.e once a value becomes ⊥, it no

longer changes)

� We terminate in this case as well

Proof #3

The fixed point solution computed by the iterative algorithm is the

maximum fixed point.

Proof By induction, for forward analyses

(BASIS) After the first iteration, values of IN[B] and OUT[B] are

≤ their initial values.

� At initialization, OUT[B] is > for all blocks B except ENTRY

� After the first iteration, in a monotone framework, all values

will be ≤ those at initialization by definitions of the ∧ and

transfer functions

Proof #3: Inductive step

Assume that:

� IN[B]k ≤ IN[B]k−1

� OUT[B]k ≤ OUT[B]k−1

Show that:

� IN[B]k+1 ≤ IN[B]k

� OUT[B]k+1 ≤ OUT[B]k

Proof #3: Continued

� To obtain IN[B] we must apply ∧ to all OUT[P]

� P is a predecessor of B

� This implies IN[B] ≤ OUT[P] (∧ yields glb)

� From our inductive hypothesis, OUT[P]k ≤ OUT[P]k−1

� applying ∧ on both sides over all P, IN[B]k+1 ≤ IN[B]k

� Now, OUT[B] = f (IN[B])

� In the monotone framework, f (x) ≤ f (y) when x ≤ y

� We have shown IN[B]k+1 ≤ IN[B]k

� Therefore, after applying f to both sides, by monotonicity, we

have OUT[B]k+1 ≤ OUT[B]k

Properties of the IDEAL solution

� Any solution greater than IDEAL is incorrect (or unsafe)

� Any solution less than or equal to IDEAL is conservative1, or

safe.

To see why, consider IDEAL solution x = p1 ∧ p2 ∧ ... ∧ pn:

� How can we obtain a value z = p1 ∧ ... greater than x?

� How can we obtain a value y = p1 ∧ ... less than x?

(recall the relationship between the results of the meet operator

and its operands)

1In the English sense

Relationship between IDEAL and MOP

� MOP considers a superset of all executable paths

� MOP solution y = p1 ∧ p2 ∧ ... ∧ pn ∧ pn+1...

� What is the relationship between MOP (y) and IDEAL (z)?

Relationship between MOP and MFP

� MOP[B4] =
((fB3◦fB1)∧(fB3◦fB2))(ventry)

� i.e., compose transfer

functions over a path and

then apply meet (e.g.

fB3 (fB1 (ventry)))

� IN[B4] =
fB3(fB1(ventry) ∧ fB2(ventry))

� i.e. apply meet at join

nodes

ENTRY

B1 B2

EXIT

B3

B4

In a distributive framework, MOP = MFP

� MOP[B4] = ((fB3 ◦ fB1) ∧ (fB3 ◦ fB2))(ventry)

� IN[B4] = fB3(fB1(ventry) ∧ fB2(ventry))

If f (x ∧ y) = f (x) ∧ f (y) (i.e. distributive):

� IN[B4] = fB3(fB1(ventry)) ∧ fB3(fB2(ventry))

� If the framework is distributive, then MOP solution = MFP
solution

� Otherwise by monotonicity MFP ≤ MOP

� In either case,

� MFP ≤ MOP ≤ IDEAL

� So all methods produce “safe” solutions

Outline

Review

Proofs

Constant Propagation

Postscript

Analyses so far

� Live variable analysis

� Available Expressions

� Reaching Definitions

� These are all distributive (implies monotonicity)

� Their lattices contain a finite number of values

� Their lattices have finite height

Constant Propagation

� Does this variable have a constant value at this point in the
program?

� Used to perform constant folding (i.e. evaluate constant

expressions at compile time)

� Data flow analysis framework

� Direction?

� Values?

� Meet operator?

� Transfer function?

Constant Propagation

� Direction: Forward

� Values:

� UNDEF: variable is undefined so far

� c : variable is constant value c

� NAC: variable is not a constant

� Meet operators and transfer functions are slightly more

complicated.

Meet for Constant Propagation

� UNDEF ∧ v =?

� NAC ∧ v =?

� c ∧ c =?

� c1 ∧ c2 =? (c1 6= c2)

Meet for Constant Propagation

� UNDEF ∧ v = v

� UNDEF is >
� NAC ∧ v = NAC

� NAC is ⊥

� c ∧ c = c

� c1 ∧ c2 = NAC

What does the lattice for constant propagation look like?

The lattice for constant propagation

UNDEF

... -3 -2 -1 0 1 2 3 ...

NAC

The Transfer Function

� OUT[s] = f (IN[s]) for a statement s

� Slightly easier to understand if we use statements instead of

basic blocks

� Observe that non-assignment statements do not change
values

� f is simply the identify function f (x) = x for such statements

� What about assignment statements?

� x = c, where x is a variable, and c is a constant

� x = y + z, where + is any binary operator

� x = *y or x = f(...), where f is a function call

The Transfer Function - II

� Note that IN (and OUT) are maps (i.e. dictionaries)

� From variables to their current dataflow values (UNDEF, c , or

NAC)

� Let’s call this map m, so that m(x) returns the dataflow value

for variable x

� x = c, changes m(x)← c

� x = y + z, where + is any binary operator (not just addition)

� m(x)← m(y) + m(z) if m(y) and m(z) are constants

� m(x)← NAC if either m(y) or m(z) is NAC

� m(x)← UNDEF otherwise

� x = *y or x = f(...), m(x)← NAC (conservatively)

� Note that m(v)← m(v) for all v 6= x

� I.e. the other values of the map remain unchanged

Note that I use slightly different notation than the textbook, which uses m′ on the LHS

Is this monotonic?

Is OUT[s] ≤ IN[s] for every s?

� For the two cases below, it is “surely ... monotone”:

� m(x)← c

� m(x)← NAC

� What about x = y + z?

� Need to show that m(x) does not get greater as m(y)

(and/or) m(z) get smaller

� Show by case analysis and symmetry

x = y + z as m(z) gets smaller

m(y) m(z) output m(x)

UNDEF UNDEF

UNDEF c2

NAC

UNDEF

c1 c2

NAC

UNDEF

NAC c2

NAC NAC

x = y + z as m(z) gets smaller (answers)

m(y) m(z) output m(x)

UNDEF UNDEF

UNDEF c2 UNDEF

NAC NAC

UNDEF UNDEF

c1 c2 c1 + c2

NAC NAC

UNDEF NAC

NAC c2 NAC

NAC NAC

Is it distributive?

ENTRY

B1:
x = 2
y = 3

B2:
x = 3
y = 2

EXIT

B3:
z = x + y

MOP solution

� Path 1 (x = 2; y = 3; z

= x + y)

� m(z) = 5, so z is a

constant

� Path 2 (x = 3; y = 2; z

= x + y)

� m(z) = 5, so z is a

constant

� Meet over Path 1 and Path
2

� m(z) = 5 ∧ 5, so z is a

constant

ENTRY

B1:
x = 2
y = 3

EXIT

ENTRY

B2:
x = 3
y = 2

EXIT

B3:
z = x + y

B3:
z = x + y

MFP solution

� At end of block B1

� m(x) = 2 and m(y) = 3

� At end of block B2

� m(x) = 3 and m(y) = 2

� Meet before block B3

� m(x) = 2 ∧ 3 (i.e. case

c1 ∧ c2)

� m(y) = 3 ∧ 2

� Conclusion?

ENTRY

B1:
x = 2
y = 3

B2:
x = 3
y = 2

EXIT

B3:
z = x + y

Constant Propagation is not distributive

� For constant propagation, in most non-trivial programs

� MFP < MOP

Outline

Review

Proofs

Constant Propagation

Postscript

References

� Chapter 9 of the Dragon book

� Section 9.3, 9.4

	Review
	Proofs
	Constant Propagation
	Postscript

