CSC2/455 Software Analysis and
Improvement
Foundations of Data Flow Analysis - |l

Sreepathi Pai
February 14, 2022

URCS

Review

Proofs

Constant Propagation

Postscript

Review

Part | of Foundations

e Methods to solve dataflow analysis equations
o IDEAL
e Meet over paths (MOP)
e Maximum Fixed Point (MFP)
IDEAL € MOP C MFP
e (Semi)lattice-based framework
e (D, V,A,F), dataflow analysis
e (V,A), meet semilattice

e (V,<), partial order, where x < y iff x Ay = x
e Monotone framework

e Greatest Lower Bound

e z<xand z<y, where z=x Ay

Monotone Framework

e A given (D, V, A, F) is monotone if for all x,y € V, and
feF:
o x<y—f(x)<f(y)
e equivalently, x <y — f(x Ay) < f(x)Af(y)
e The proof of equivalence is in the textbook.
e In addition, the framework is distributive if:
o fxAy)="Ff(x)Nf(y)
e Note that these properties do not necessarily arise
automatically, F must be designed to have these properties

e And proofs must be written to show that F does.
e We'll see this for a complicated example today.

General lterative Algorithm

forwards (IN, OUT, meet, top, v_entry, f_transfer)
OUT [entry] = v_entry

for each basic block B except ENTRY:
OUT[B] = top
do {
for each basic block B except ENTRY:
this calculates the meet over predecessors, /\p OUT[p]
IN[B] = reduce(meet, [0UT[p] for p in B.predecessors])
QUT[B] = f_transfer(IN[B])

} while(some OUT changes value)

e Does this calculate the solution to the dataflow problem?
e Does this algorithm terminate?

e Does this algorithm calculate the maximum fixed point — i.e.
the most precise solution admissible?

e Proofs that answer these three questions

e Relationships between IDEAL, MOP and MFP in terms of the
framework

e Examples of:

e a non-distributive framework (from Dragon 9.4, Constant
Propagation)

e lattices containing infinite values

e possibly some proof writing exercises (from Dragon 9.3)

Proofs

Proof #1

do {
for each basic block B except ENTRY:
this calculates the meet over predecessors, /\p OUT[p]

IN[B] = reduce(meet, [0UT[p] for p in B.predecessors])
OUT[B] = f_transfer(IN[B])

} while(some OUT changes value)

The iterative algorithm computes the solution to the dataflow
problem.

e The iterative algorithm performs an unbounded number of
iterations as long as IN and OUT change

e When it terminates, IN and OUT have not changed for an
iteration

e The values of IN and OUT therefore satisfy the equations

e Hence they are solutions of the dataflow problem

Proof #2

The iterative algorithm terminates (i.e. converges to a fix point).

e When we apply the A operator, we obtain the glb
e ie.z=xAyandz<xand z<y

Since the framework is monotone:
o f(x)<f(y)ifx<y
e i.e. OUT values are no greater than the IN values

At each step, these values decrease or remain the same

e When they all remain the same, we terminate

If values decrease, recall the lattice has finite height

e Implies a finite number of steps before we reach L

e xN\L=_1andf(L)=_L (i.e once a value becomes _L, it no
longer changes)

e \We terminate in this case as well

The fixed point solution computed by the iterative algorithm is the
maximum fixed point.

Proof By induction, for forward analyses
(BASIS) After the first iteration, values of IN[B] and OUT[B] are

< their initial values.

e At initialization, OUT[B] is T for all blocks B except ENTRY

e After the first iteration, in a monotone framework, all values
will be < those at initialization by definitions of the A and
transfer functions

Proof #3: Inductive step

Assume that:

o IN[B]* < IN[B]k!
e OUT[B]* < OUT[B]*!

Show that:

e IN[B]*+1 < IN[BJ*
e OUT[B]**! < OUT[B]*

Proof #3: Continued

e To obtain IN[B] we must apply A to all OUT[P]
e P is a predecessor of B
e This implies IN[B] < OUT[P] (A yields glb)
e From our inductive hypothesis, OUT[P]* < OUT[P]*~1
e applying A on both sides over all P, IN[B]**! < IN[B]
e Now, OUT|[B] = f(IN[B])
e In the monotone framework, f(x) < f(y) when x <y

e We have shown IN[B]**1 < IN[B]*
e Therefore, after applying f to both sides, by monotonicity, we

have OUT[B]“*! < OUT[B]*

Properties of the IDEAL solution

e Any solution greater than IDEAL is incorrect (or unsafe)

e Any solution less than or equal to IDEAL is conservative!, or
safe.

To see why, consider IDEAL solution x = py A po A ... A pp:

e How can we obtain a value z = p; A ... greater than x?

e How can we obtain a value y = p; A ... less than x7

(recall the relationship between the results of the meet operator
and its operands)

In the English sense

Relationship between IDEAL and MOP

e MOP considers a superset of all executable paths

e MOP solution y = p1 Apa A cc. App A Ppii-..
e What is the relationship between MOP (y) and IDEAL (z)?

Relationship between MOP and MFP

e MOP[By] = ENTRY
((f33OfBl)/\(fB3ofBz))(Ventf}’) ’/ \
B1 B2
e i.e,, compose transfer
functions over a path and \‘ '/
then apply meet (e.g. 53
8, (8, (Ventry)))
L4 IN[B4] = B4
fB3(fB1(Ventry) A fBQ(Ventry))
e i.e. apply meet at join E;T

nodes

In a distributive framework, MOP = MFP

° MOP[B4] = ((fB3 o fBl) (fB3 © fB2))(Ventry)
o IN[By4] = fB,(fB,(Ventry) N fB,(Ventry))
)
(

If f(x Ay)=f(x)Af(y) (i.e. distributive):
° IN[B4] = fB3 fBl(Ventry)) A fB3(fBz(Ventry))

o |f the framework is distributive, then MOP solution = MFP
solution

e Otherwise by monotonicity MFP < MOP
e |n either case,

e MFP < MOP < IDEAL
e So all methods produce “safe” solutions

Constant Propagation

Analyses so far

e Live variable analysis
e Available Expressions
e Reaching Definitions
e These are all distributive (implies monotonicity)
e Their lattices contain a finite number of values

Their lattices have finite height

Constant Propagation

e Does this variable have a constant value at this point in the
program?
e Used to perform constant folding (i.e. evaluate constant
expressions at compile time)
e Data flow analysis framework
e Direction?
e Values?
e Meet operator?
e Transfer function?

Constant Propagation

e Direction: Forward
e Values:
e UNDEF: variable is undefined so far
e c: variable is constant value ¢
e NAC: variable is not a constant
e Meet operators and transfer functions are slightly more

complicated.

Meet for Constant Propagation

e UNDEF A v =7
o NACAv =7
e cANc="

c1N\cy="? (Cl 75 Cg)

Meet for Constant Propagation

e UNDEFAvVv=v
e UNDEF is T

e NACA v =NAC
e NACis L

e cANc=c

e c1 ANy =NAC

What does the lattice for constant propagation look like?

The lattice for constant propagation

The Transfer Function

e OUT][s| = f(IN][s]) for a statement s

e Slightly easier to understand if we use statements instead of
basic blocks

e Observe that non-assignment statements do not change
values
e f is simply the identify function f(x) = x for such statements
e What about assignment statements?

e x = c, where x is a variable, and c is a constant

e x = y + z, where + is any binary operator

e x = xyorx = £(...), where £ is a function call

The Transfer Function - Il

e Note that IN (and OUT) are maps (i.e. dictionaries)
e From variables to their current dataflow values (UNDEF, ¢, or
NAC)
e Let's call this map m, so that m(x) returns the dataflow value
for variable x
e x = c, changes m(x) < ¢
e x = y + z, where + is any binary operator (not just addition)
e m(x) < m(y)+ m(z) if m(y) and m(z) are constants
e m(x) < NAC if either m(y) or m(z) is NAC
e m(x) < UNDEF otherwise
e x =x*xyorx = £(...), m(x) - NAC (conservatively)
Note that m(v) <— m(v) for all v # x

e |.e. the other values of the map remain unchanged

Note that | use slightly different notation than the textbook, which uses m’ on the LHS

Is this monotonic?

Is OUT[s] < IN[s] for every s?

e For the two cases below, it is “surely ... monotone”:
e m(x)+c
e m(x) < NAC

e What about x = y + 27

e Need to show that m(x) does not get greater as m(y)
(and/or) m(z) get smaller
e Show by case analysis and symmetry

x =y + z as m(z) gets smaller

m(z)

output m(x)

UNDEF
(&)
NAC

UNDEF

G

UNDEF
o
NAC

NAC

UNDEF
(&)
NAC

NAC

x =y + z as m(z) gets smaller (answers)

m(y) m(z) | output m(x)

UNDEF UNDEF

UNDEF o)) UNDEF
NAC NAC

UNDEF UNDEF

c1 o -+ o
NAC NAC
UNDEF NAC
NAC @ NAC
NAC NAC

Is it distributive?

Bl: B2:

KX
I
I

N W

] X} W

EXIT

MOP solution

e Pathl(x =2; y=23; z
=x +7y) ENTRY ENTRY

e m(z)=5,s0zisa

constant B1: B2
= 0 = . X =2 x =3
e Path2 (x = 3; y=2; z v o3 v
=x +y)
e m(z)=5s0zisa \ \
B3: B3:
constant z=x+y z=x+y
e Meet over Path 1 and Path
2
EXIT EXIT
e m(z)=5Ab,s0zisa

constant

MFP solution

At end of block B '/ \‘

e m(x)=2and m(y) =3
At end of block By

[}
w
e
w
N

KX
o
N W h

2

e m(x)=3and m(y) =2 3
Meet before block B3 \‘
B

e m(x) =2A3 (i.e. case
a o) z x
e my)=3A2 l

Conclusion?

EXIT

Constant Propagation is not distributive

e For constant propagation, in most non-trivial programs
¢ MFP < MOP

Postscript

References

e Chapter 9 of the Dragon book
e Section 9.3, 9.4

	Review
	Proofs
	Constant Propagation
	Postscript

