
CSC2/455 Software Analysis and

Improvement

Partial Redundancy Elimination

Sreepathi Pai

February 21, 2022

URCS



Outline

Review

Partial Redundancy Elimination

Postscript



Outline

Review

Partial Redundancy Elimination

Postscript



Optimizations: Dead Code Elimination

� Find useful operations (backward analysis)

� Find useful conditional branches

� Reverse Dominance Frontier

� Remove code, and “touch up CFG”



Outline

Review

Partial Redundancy Elimination

Postscript



Redundancy: Fully Redundant

a = b + c b = 7
d = b + c

e = b + c

t = b + c
a = t

b = 7
t = b + c
d = t

e = t



Redundancy: Loop Invariant

a = b + c

t = b + c

a = t



Redundancy: Partial Redundancy

a = b + c

d = b + c

t = b + c
a = t t = b + c

d = t



Eliminating Redundancy: Complication 1

a = b + c B3

d = b + c

...

Can we insert t = b + c in B3?



Splitting Critical Edges

t = b + c
a = t

B3

d = t

t = b + c

...

(Similar to when we were inserting minimal φ-functions.)



Eliminating Redundancy: Complication 2

a = b + c

d = b + c

Note that there is no block where t = b + c can be introduced

without introducing computations not in the original program.



CFG duplication

t = b + c
a = t

B4 B4 (dup.)

d = t d = b + c

(Possibility of exponential blowup.)



The Lazy Code Motion Algorithm

� Eliminate all expressions when it will not duplicate code

� Do not perform computations not in original program

� Although where the computation is performed can change

� Delay computation for as long as possible

� “Lazy”

� Helps lower resource (esp. register) usage



Setup

For all blocks B in CFG, compute:

� e useB : set of expressions used in a block

� e killB : set of expressions killed in block

� usually by redefining subcomponents

Also, split all critical edges, inserting empty blocks.



Anticipable Expressions

Recall very busy expressions. An expression e is anticipable at

block p if:

� ?



Anticipable Expressions

Recall very busy expressions. An expression e is anticipable at

block p if:

� e is used/computed on all paths leading out of p

� And it is not killed before the use

� Implies that p can compute e and all paths could use this

result



Anticipable Expressions Analysis

� Direction: Backwards

� Values: Expressions in programs

� Meet: ∩
� Transfer Function

� fB(x) = e useB ∪ (x − e killB)

� Equations:

� OUT[B] = ∧S∈succ(B)IN[S ]

� IN[B] = fB(OUT[B])

� > = U

� IN[EXIT ] = ∅



Available Expressions

An expression is available at a program point p if:

� it has been computed along all paths leading into p

� it has not been killed since being computed until p

� (NEW) it is anticipated at p

� we could make it available if it is anticipated



Available Expressions Analysis

� Direction: Forwards

� Meet: ∩
� Transfer function

� fB(x) = (e useB ∪ anticipable[B].in) ∪ (x − e killB)

� Equations

� IN[B] = ∧P∈pred(B)OUT[P]

� OUT [B] = fB(IN[B])

� > = U

� OUT[ENTRY ] = ∅



Positioning Expressions

� When is the earliest an expression can be evaluated?

� When is the latest an expression can be evaluated?



Positioning Expressions: Earliest

� When is the earliest an expression can be evaluated?

� When it anticipated, but not available

� earliest[B] = anticipable[B].in − available[B].in

� Observe notation for results of different analyses



Anticipable + (Not) Available = Earliest

c = 2

a = b + c

d = b + c

e = b + c

c = 2

a = b + c

d = b + c

e = b + c

c = 2

a = b + c

d = b + c

e = b + c



Positioning Expressions: Latest

� When is the latest an expression can be evaluated?

� When it can no longer be postponed

� “Postponed”: expression pushed down from earliest placement

� When can we push down an expression into the next block?



Postponable Expressions

An expression e is postponable to

a block p if:

� e could be placed in block b

before p (earliest is before p)

� Such that it is available on

all paths leading to p from

ENTRY

� And e is not used after

block b (i.e., before p)

b

c

d

p

t = x + y



Postponable Expressions Analysis

� Direction: Forwards

� Values: Expressions

� Meet: ∩
� Transfer functions

� fB(x) = (earliest[B] ∪ x)− e useB

� Equations

� OUT[B] = fB(IN[B])

� IN[B] = ∧P∈pred(B)OUT [P]

� > = U

� OUT[ENTRY ] = ∅



Postponable

c = 2

a = b + c

d = b + c

e = b + c



Postponement Frontier

A block p is on the postponement frontier for an expression e if

� e can be postponed to p

� e cannot be placed at entry to a successor s of p

� e is used in p

� e is not postponable from some predecessor of s

� e is not in earliest[S ]

latest[B] = (earliest[B] ∪ postponable[B].in) ∩
(e useB ∪ (∩S∈succ(B)(earliest[S ] ∪ postponable[S ].in)){)

(Note: A{ means the complement of set A)



Used Expressions

An expression e in block p is used if:

� Some block q uses e

� There exists a path from p to q that does not invalidate e

� I.e. recompute e or invalidate its operands



Used Expressions Analysis

� Direction: Backwards

� Values: Expressions

� Meet: ∪
� Transfer function

� fB(x) = (x ∪ e useB)− latest[B]

� Equations

� IN[B] = fB(OUT[B])

� OUT[B] = ∧S∈succ(B)IN[s]

� > = ∅
� IN[EXIT ] = ∅



Putting it all together - I

� Compute anticipable[B].in, available[B].in

� Compute earliest[B]

� Compute postponable[B].in

� Compute latest[B]

� Compute used [B].out



Putting it all together - II

For each expression x + y in program:

� Create t = x + y (where t is a unique temporary)

� Place t = x + y at the beginning of all blocks B such that

� x + y is in latest[B] ∩ used [B].out

� i.e. B is the last block where x + y can be placed, and x + y

is used after B

� Replace all x + y with t in all block B where:

� x + y ∈ (e useB ∩ (latest[B]{ ∪ used [B].out)

� I.e., x + y is in e useB , and

� x + y is NOT in latest[B], or

� x + y is in used[B].out

Algorithm 9.36 in the Dragon Book.



Final result

c = 2

t = b + c
a = t

t = b + c

d = t

e = t



Outline

Review

Partial Redundancy Elimination

Postscript



References

� Chapter 9 of the Dragon Book

� Section 9.5


	Review
	Partial Redundancy Elimination
	Postscript

