
CSC2/455 Software Analysis and

Improvement

Abstract Interpretation - II

Sreepathi Pai

March 30, 2022

URCS

Outline

Introduction

A Tiny Language and Its Semantics

To be continued ...

Outline

Introduction

A Tiny Language and Its Semantics

To be continued ...

Previous lecture

� We learnt about program analysis tools beyond iterative

dataflow analysis

� Abstract Interpretation

� Maps concrete states of programs to abstract states

� Abstract states belong to an abstract domain: signs, intervals,

convex polyhedra, ...

� Define transfer functions to convert pre-condition (input)

states to post-condition (output) states

� Union for alternate paths

� Widen for loops

� This lecture:

� Concrete Semantics for a small language

A note on the presentation

� This lecture defines a number of formal concepts and is

notation-heavy.

� I also provide an equivalent formal notation in (Python) code

to hopefully make it easier

Outline

Introduction

A Tiny Language and Its Semantics

To be continued ...

A Tiny Language: Grammar

n ∈ V

x ∈ X

�::= + | − | ∗ |...
<::= < | ≤ | > | == |...

� n is a set of concrete values, here we shall treat V = Z
� All values are integers

� x is the name of a variable. The set X contains all variable

names.

� � represents arithmetic binary operators

� < represents boolean binary operators

A Tiny Language: Expressions

E ::=n | x | E � E

B::=x < n

� An arithmetic expression E is:

� a number, or

� a variable name,

� or a binary expression

� A boolean expression B is:

� a variable,

� a boolean operator

� a constant n

Python AST

from typing import Union
from typing_extensions import Literal

BinaryOps = Literal[’+’, ’-’, ’*’, ’/’]
ComparisonOps = Literal[’<’, ’>’, ’==’, ’<=’, ’>=’, ’!=’]

Scalar = int # restrict Scalars to ints in this implementation

class Node(object):
pass

class Var(Node):
def __init__(self, name: str):

self.name = name

def __str__(self):
return self.name

Expr = Union[Scalar, Var, ’BinOp’]

� This is Python 3 augmented with types

� Union stands for a union type

AST for BinOp and BoolExpr

class BinOp(Node):
def __init__(self, op: BinaryOps, left: Expr, right: Expr):

self.op = op
self.left = left
self.right = right

...
class BoolExpr(Node):

def __init__(self, op: ComparisonOps, left: Var, right: Scalar):
self.op = op
self.left = left
self.right = right

...

� Nothing special here, each component of the grammar is

stored in the respective AST nodes

� I’m eliding implementations of str , indicated by ’...’

Commands in the language

C ::=

skip

| C ;C

| x := E

| input(x)

| if(B){C} else {C}
| while(B){C}

P::=C

AST nodes for commands

class Cmd(Node):
pass

class Skip(Cmd):
def __init__(self):

pass

class Seq(Cmd):
def __init__(self, cmd0: Cmd, cmd1: Cmd):

self.cmd0 = cmd0
self.cmd1 = cmd1

class Assign(Cmd):
def __init__(self, left: Var, right: Expr):

self.left = left
self.right = right

class Input(Cmd):
def __init__(self, var: Var):

self.var = var

def __str__(self):
return f"input({self.var})"

class IfThenElse(Cmd):
def __init__(self, cond: BoolExpr, then_: Cmd, else_: Cmd):

self.cond = cond
self.then_ = then_
self.else_ = else_

class While(Cmd):
def __init__(self, cond: BoolExpr, body: Cmd):

self.cond = cond
self.body = body

class Program(Node):
def __init__(self, cmd: Cmd):

self.program = cmd

Representing Programs

if(x > 7) {
y := (x - 7)

} else {
y := (7 - x)

}

can be represented using the AST as:

x = Var(’x’)
y = Var(’y’)

t = Program(IfThenElse(BoolExpr(’>’, x, 7),
Assign(y, BinOp(’-’, x, 7)),
Assign(y, BinOp(’-’, 7, x))
)

)

Executing programs

To execute programs represented as ASTs, we need the following:

� Storage/Memory: to track values of variables

� Semantics: to express what each command does, usually
mathematical

� Denotational semantics (“input/output” semantics)

� Operational semantics

� Axiomatic semantics

� and many others...

Memory/Storage

M = X→ V

� A store (from storage) is a map/function from variables to

values

� We’ll represent it as (assuming X = {x, y}):

m = {x→ 3, y→ 4}

� Store (or memory) m maps x to 3 and y to 4.

� So, m(x) = 3, and m(y) = 4

Memory/Storage (Python)

from typing import Dict, List

using str instead of Var, with Var.name as the key.
This is accidental.
Memory = Dict[str, int]

x = Var(’x’)
y = Var(’y’)

m = {x.name: 3, y.name: 4}

print(m[x.name])
print(m[y.name])

Semantics of Arithmetic Expressions

� The semantics of an expression E depend on the memory

store m

� We use JEK(m) to denote its semantics

� We’ll define JEK(m) over its grammar as:

JnK(m) = n

JxK(m) = m(x)

JE0 � E1K(m) = f�(JE0K(m), JE1K(m))

� Here f� is the function that implements �, for example:

� f+(a, b) = a + b

Arithmetic Expression Semantics in Python

def f_binop(op: BinaryOps, left: Scalar, right: Scalar) -> Scalar:
if op == ’+’:

return left + right
elif op == ’-’:

return left - right
elif op == ’*’:

return left * right
elif op == ’/’:

return left // right
else:

raise NotImplementedError(f"Unknown operator: {op}")

def evaluate_Expr(E: Expr, m: Memory) -> Scalar:
if isinstance(E, Scalar):

return E
elif isinstance(E, Var):

return m[E.name]
elif isinstance(E, BinOp):

return f_binop(E.op,
evaluate_Expr(E.left, m),
evaluate_Expr(E.right, m))

Semantics of Boolean Expressions

� Let B be the set {true, false}
� The semantics of a boolean expression is then JBK : M→ B

Jx < nK(m) = f<(m(x), n)

which can be expressed in Python as:

def f_cmpop(op: ComparisonOps, left: Scalar, right: Scalar) -> bool:
if op == ’<’:

return left < right
elif op == ’>’:

return left > right
...

def evaluate_BoolExpr(B: BoolExpr, m: Memory) -> bool:
return f_cmpop(B.op, m[B.left.name], B.right)

Semantics of other commands

� Both JEK and JBK are building blocks for the semantics of

other commands

� While they were defined on a single memory store m, we’re
going to define the semantics for commands on a set of
memory states M

� So, m ∈ M, and M ∈ ℘(M)

� where ℘(M) denotes the powerset of memory stores

� This way, our semantics for commands J·KP will convert a set

of input states to a set of output states

Command Semantics – #1

JCKP : ℘(M)→ ℘(M)

JskipKP(M) = M

JC0;C1KP(M) = JC1KP(JC0KP(M))

Jx := EKP(M) = {m[x 7→ JEK(m)] | m ∈ M}

Jinput(x)KP(M) = {m[x 7→ n] | m ∈ M, n ∈ V}

� The notation m[x 7→ n] is a memory update, it creates a new
store identical to m except that x is updated to n

� input(x) updates variable x with a non-deterministic value n

Command Semantics – Python

def evaluate_Cmd(C: Cmd, M: List[Memory]) -> List[Memory]:
def update_memories(var, value_lambda):

out = []
for m in M:

m_out = dict(m)
m_out[var] = value_lambda(m)
out.append(m_out)

return out

if isinstance(C, Skip):
return M

elif isinstance(C, Program):
return evaluate_Cmd(C.program, M)

elif isinstance(C, Assign):
return update_memories(C.left.name,

lambda m: evaluate_Expr(C.right, m))
elif isinstance(C, Input):

n = random.randint(0, 100) # could be anything, actually
return update_memories(C.var.name, lambda _: n)

elif isinstance(C, Seq):
return evaluate_Cmd(C.cmd1, evaluate_Cmd(C.cmd0, M))

...

� I’ve chosen M to be a list of memories (recall Memory is a

Dict[str, int])

Example of using evaluate Cmd

x = Var(’x’)
y = Var(’y’)

m1 = {x.name: 3, y.name: 4}
m2 = {x.name: 5, y.name: 6}

M_in = [m1, m2]

M_out = evaluate_Cmd(Assign(x, 7), M_in)

M_out = [{’x’: 7, ’y’: 4}, {’x’: 7, ’y’: 3}]

Command Semantics for If - #1

Jif(B){C0} else {C1}KP(M) =?

� C0 (the code executing when B is true) must only operate on

m ∈ M where JBK(m) evaluates to true.

� C1 (the code executing when B is false) must only operate

on m ∈ M where JBK(m) evaluates to false.

� Define a filter function FB(M) such that

FB(M) = {m ∈ M | JBK(m) = true}

� Note: F¬B will give us the memories where B is false.

Command Semantics for If - #2

Jif(B){C0} else {C1}KP(M) = JC0KP(FB(M)) ∪ JC1KP(F¬B(M))

� Find stores where B is true, evaluate C0 over them

� Find stores where B is false, evaluate C1 over them

� Combine the two results using ∪

Command Semantics for If in Python

def filter_memory(B: BoolExpr, M: List[Memory], res = True) -> List[Memory]:
out = [m for m in M if evaluate_BoolExpr(B, m) == res]
return list(out)

def evaluate_Cmd(C: Cmd, M: List[Memory]) -> List[Memory]:
...

elif isinstance(C, IfThenElse):
then_memory = evaluate_Cmd(C.then_, filter_memory(C.cond, M))
else_memory = evaluate_Cmd(C.else_, filter_memory(C.cond, M,

res = False))

return union_memories(then_memory, else_memory)

...

def union_memories(M0: List[Memory], M1: List[Memory]) -> List[Memory]:
this implementation is, of course, ridiculous

convert everything to sets
M0_set = set([frozenset(m.items()) for m in M0])
M1_set = set([frozenset(m.items()) for m in M1])

M_set = M0_set.union(M1_set)

convert back to lists of dicts
return list([dict(m) for m in M_set])

Semantics for While - #1

Jwhile(B){C}KP(M)

� B must be true in m ∈ M to execute C once

� (JCKP ◦FB)(M)

� Executing C twice is similar:

� (JCKP ◦FB)((JCKP ◦FB)(M))

� Let F be JCKP ◦FB , then execution i times is represented as

� F i (M), i.e. F (F (F (M))) for i = 3

� If the loop executes i times and exits, the memory stores are:

� Mi = F¬B(F i (M)), because B must be false when we exit the

loop

Semantics for While - #2

� Let Mi = F¬B(F i (M)) represent executions of the loop body

exactly i times, i ≥ 0

� Then we can define the semantics of those i executions as:

⋃
i≥0

Mi =
⋃
i≥0

F¬B(F i (M))

= F¬B(
⋃
i≥0

F i (M))

Jwhile(B){C}KP(M) = F¬B(
⋃
i≥0

(JCKP ◦FB)i (M)))

� The semantics of a non-terminating loop are undefined.

While semantics, Python implementation

def evaluate_Cmd(C: Cmd, M: List[Memory]) -> List[Memory]:
...
elif isinstance(C, While):

L0
out = [m for m in M] # copy all input states

pre_iter_memories = filter_memory(C.cond, out)
accum: List[Memory] = []
while len(pre_iter_memories):

after_iter_memories = evaluate_Cmd(C.body, pre_iter_memories)
accum = union_memories(accum, after_iter_memories)

only keep memories where the condition is true
pre_iter_memories = filter_memory(C.cond, after_iter_memories)

This computes L0 U (L1 U L2...) and retains only those
memory states where the loop has terminated.
out = filter_memory(C.cond, union_memories(out, accum), res=False)
return out

Example of While execution

while(x < 7) {
y := (y + 1);
x := (x + 1)

}

START [{x: 4, y: 0}, {x: 5, y: 0}, {x: 8, y: 0}]

pre: [{x: 4, y: 0}, {x: 5, y: 0}]
after: [{x: 5, y: 1}, {x: 6, y: 1}]
accum: [{x: 5, y: 1}, {x: 6, y: 1}]

pre: [{x: 5, y: 1}, {x: 6, y: 1}]
after: [{x: 6, y: 2}, {x: 7, y: 2}]
accum: [{x: 5, y: 1}, {x: 6, y: 1}, {x: 7, y: 2},

{x: 6, y: 2}]

pre: [{x: 6, y: 2}]
after: [{x: 7, y: 3}]
accum: [{x: 7, y: 3}, {x: 6, y: 2}, {x: 5, y: 1},

{x: 6, y: 1}, {x: 7, y: 2}]

END [{x: 7, y: 3}, {x: 7, y: 2}, {x: 8, y: 0}]

Wrapping up the semantics

� JCKP(∅) = ∅
� Starting from an empty set of states leads to an empty set of

states

� Key ideas:

� Grammar → AST

� AST → Semantics

� Semantics → Interpreter

Outline

Introduction

A Tiny Language and Its Semantics

To be continued ...

Next lecture

� Abstraction, and building an abstract interpreter

� This lecture was based on material from Chapter 3 in Rival

and Yi

� You can find the Python code on GitHub

� This lecture covered tinyast.py and sem.py

https://github.com/sree314/simple-abstract-interpreter
https://github.com/sree314/simple-abstract-interpreter/blob/master/tinyast.py
https://github.com/sree314/simple-abstract-interpreter/blob/master/sem.py

	Introduction
	A Tiny Language and Its Semantics
	To be continued ...

