
CSC2/455 Software Analysis and

Improvement

Instruction Selection/Instruction

Scheduling/Register Allocation

Sreepathi Pai

March 16, 2022

URCS

Outline

Review

Instruction Selection

Instruction Scheduling

Global Register Allocation

Postscript

Outline

Review

Instruction Selection

Instruction Scheduling

Global Register Allocation

Postscript

Optimizations

� Analysis

� Iterative Dataflow Analysis

� SSA Form

� Interprocedural Analysis

� Loop Analysis

� Type Checking [next class]

� Optimization

� Dead Code Elimination

� Partial Redundancy Elimination

� Code Generation

� Instruction Selection

� Instruction Scheduling

� Register Allocation

Outline

Review

Instruction Selection

Instruction Scheduling

Global Register Allocation

Postscript

The Problem

a = b + c
c = c + 1

gets converted to (in some pseudo-assembly language):

add a, b, c
inc c

Pattern Matching

$x = $x + 1 => inc $x

� A pattern (or “macro”) is specified and when it matches on

the 3-address code, instructions are emitted.

� Pattern matching is no longer used to select instructions

� but still useful for something called peephole optimization

Tree Covering

� Pattern matching operates on sequences of instructions

� Usually one, but could be more

� Tree-based systems operate on trees of expressions

� Limited to basic blocks

Example

See Figure 1 from the Twig Paper

Tree rewriting rules

See Table 1 from the Twig Paper

Tree Matching

See Page 501 of the Twig Paper.

� Informally, a tree pattern can be viewed as a string formed by

a pre-order traversal of the tree.

� All patterns can then be viewed as strings and an automaton

constructed to search for strings and substrings.

Code Generation

See the discussion in Section 5 of the Twig Paper.

� Evaluate costs of subtrees

� Use that to evaluate cost of tree

� Use dynamic programming to pick the tree ”covering” with

the lowest cost.

Outline

Review

Instruction Selection

Instruction Scheduling

Global Register Allocation

Postscript

The need for instruction scheduling

� Code is in 3-address form

� Instructions have been selected

� e.g. a / 4 becomes shr a, 2 (shift-right) or sar a, 2

(shift-arithmetic right)

� What (linear) order should we output instructions?

A modern CPU pipeline

Source: Intel 64 and IA-32 Architectures Optimization Manual

Pipeline Details Known to Compiler

� Number of functional units and their types

� Which instructions can be issued together

� Latencies of operations

� Note some operations can have variable latencies (e.g.

memory operations)

� Forwarding latencies

� Delays when sending values from one functional unit to another

� Or from one instruction to another

� And other sundry architecture details

� See the architecture manuals for processor of interest

Two metrics of interest

� Throughput: Instructions completed per cycle

� Higher is better

� Latency: Total cycles for execution

� Lower is better

Basic block to data dependence graph

a = x + y
b = v / w
c = a * b
d = z << 2
e = c - d

a = x + y

c = a * b

b = v / w

e = c - d

d = z << 1

Schedule

Assume the following delays:

� Add, Shifts, Subtraction: 1 cycle

� Multiplication: 2 cycles

� Division: 3 cycles

Cycle ALU1 ALU2

0 a = x + y b = v / w

1 d = z << 1 (busy)

2 (idle) (busy)

3 c = a * b (idle)

4 (busy) (idle)

5 e = c - d (idle)

What determines the total time of the path?

Critical Path

� The path that takes the longest to execute

� Equivalently, has zero slack

� Delaying operations on critical path will increase total time

List scheduling

Goal: Schedule instructions on every cycle (i.e. build a table like in

previous figure)

� Overall structure:

� Mark operations whose predecessors have completed as ready

� Pick operations that are ready

� Schedule them in some order if resources available

� Proceed to next cycle

� Repeat until all operations are scheduled

(Figure 12.3 in Cooper and Torczon)

Priority/Heuristics

Always prioritize instructions on critical path.

� Can be hard to achieve

� Variable delays

� Multiple functional units

� Other architecture-specific constraints

Other Complications

� Small basic block sizes

� Loop unrolling

� Trace scheduling

� Long dependence chains with little parallelism

� Software Pipelining

Outline

Review

Instruction Selection

Instruction Scheduling

Global Register Allocation

Postscript

The Memory Hierarchy (on CPUs)

� Registers (on chip, few tens to low hundreds)

� L1 cache (tens of KB)

� L2 cache (tens of MB)

� DRAM (tens of GB)

� off-chip

Numbers every programmer should know

� Register access: 1 cycle

� L1 cache: less than 10 cycles

� L2 cache: less than 100 cycles

� DRAM: hundreds of cycles

Bottomline: Placing frequently used variables in registers can

improve performance

The Problem of Global Register Allocation

� Code is in SSA form (with φ-functions removed)

� SSA form uses infinite registers (each temporary is a

“register”)

� Must map these logical registers to physical machine registers

Problem and Setup

Must answer two main questions:

� How many physical registers are needed? (k is the number of
physical registers)

� < k , fewer than available – everybody gets a register!

� > k , more than available – results in spill code

� Spilled registers are stored in memory and reloaded later

� Which physical register is assigned to which variable?

Live Ranges

A live range is a set of all definitions and uses of the same variable

such that:

� If a use u for variable i is in LRi , then all definitions d that

reach u are also in LRi

� If a definition d for variable i is in LRi , then all uses u reached

by d are also in LRi

Live range example

...
a0 ← ...

B3

B1 B2

B0

B3

B1 B2

B0

b0 ← ...
... ← b0
d0 ← ...

d2 ← φ(d0, d1)
... ← a0
... ← d2

c0 ← ...
...

d1 ← c0

...
LRa ← ...

LRb ← ...
... ← LRb
LRd ← ...

... ← LRa

... ← LRd

LRc ← ...
...

LRd ← LRc

� Live ranges

� LRa = {a0}
� LRb = {b0}
� LRc = {c0}
� LRd = {d0, d1, d2}

Interference Graphs

� Two live ranges ”interfere”
if they are both live at an
operation

� Implies that they must be

in different registers

� Represented by an
interference graph

� Nodes are live ranges

� An (undirected) edge

between nodes n and m

indicates interference

LR0

LR1 LR2

LR3

Register Allocation as Graph Coloring

Given an interference graph, the

minimal number of physical

registers required is equal to the

chromatic number of the graph

(due to Chaitin).

� Chromatic number is the

minimum number of colors

required such adjacent

nodes have different colors

� NP-complete problem

LR0

LR1 LR2

LR3

Three Color Example

LR0

LR1 LR2

LR3

LR0

LR1 LR2

LR3

Parting thoughts

What order should instruction selection, instruction scheduling,

and register allocation be performed?

Outline

Review

Instruction Selection

Instruction Scheduling

Global Register Allocation

Postscript

References

� Aho, Ganapathi, and Tjiang, Code Generation Using Tree

Matching and Dynamic Programming, ACM TOPLAS

� Blindell, Survey on Instruction Selection: An Extensive and

Modern Literature Review, arXiv

� Chapter 12 of Cooper and Torczon (Instruction Scheduling)

� Chapter 13 of Cooper and Torczon (Register Allocation)

� Also recommended: Chapter 8 of the Dragon Book

https://dl.acm.org/doi/pdf/10.1145/69558.75700
https://dl.acm.org/doi/pdf/10.1145/69558.75700
http://arxiv.org/abs/1306.4898
http://arxiv.org/abs/1306.4898

	Review
	Instruction Selection
	Instruction Scheduling
	Global Register Allocation
	Postscript

