
CSC2/455 Software Analysis and

Improvement

Program Analysis/Abstract Interpretation

Sreepathi Pai

Mar 28, 2022

URCS



Outline

And now for something (not so completely) different

Program Analysis in Industry

Basic Notions

Illustrating Abstract Interpretation

Postscript



Outline

And now for something (not so completely) different

Program Analysis in Industry

Basic Notions

Illustrating Abstract Interpretation

Postscript



So far

� Data flow analysis

� Iterative data flow analysis

� Region-based analysis

� Loop analysis

� Type Checking

� What next?



Compilers are not the only program analyzers

� Compilers are probably the most used program analyzers

� But are severely time constrained

� Finding program errors is not primary goal

� Syntax errors, type errors

� Code generation primary goal



Program/Software Analysis

� Software is increasingly mission-critical

� Can kill people!

� Boeing 737 MAX(?)

� Therac-25 (X-ray)

� Industrial Robotics

� (less extreme?) Can lose money

� Software crashes

� Data loss

� Can we analyze programs for functional correctness?

� Topic of the next few lectures



Outline

And now for something (not so completely) different

Program Analysis in Industry

Basic Notions

Illustrating Abstract Interpretation

Postscript



SLAM (Microsoft, early 2000s)

� MS isolated most crashes to

buggy drivers

� Static Driver Verifier project

� Would verify driver code

(in C) for correctness

� Used model checking

� Models programs as

finite-state machines

� I used a similar tool

(CBMC) to check your

assignments

https://www.cprover.org/cbmc/


Infer (Facebook)

� Checks C, C++, Objective C, Java and Android code

� Used for checking Facebook’s mobile apps

� Open source, https://fbinfer.com/

� Used by Amazon, Mozilla, Uber and Facebook and its

affiliates, JD.com, etc.

� Comes with its own language AL (OCaml-derivative?) to
describe analyses

� Analyzes programs in SIL (“Smallfoot Intermediate Language”)

� Uses abstract interpretation + separation logic

� Abstract interpretation very similar to data flow analysis

frameworks

� CACM Article: Scaling Static Analyses at Facebook

� Good video: Getting the most out of static analyzers

https://fbinfer.com/
https://cacm.acm.org/magazines/2019/8/238344-scaling-static-analyses-at-facebook/fulltext
https://atscaleconference.com/videos/getting-the-most-out-of-static-analyzers


SPARTA (Facebook)

� Language-independent
analyzer

� a C++ framework

� Open source,

https://code.fb.com/

open-source/sparta/

� Used in FB’s RedEx tools

� for analyzing Android

binary code (.dex)

� Also uses abstract

interpretation

https://code.fb.com/open-source/sparta/
https://code.fb.com/open-source/sparta/


Other efforts

� Stanford Checker

� commercialized by Coverity, late 2000s

� CACM article, “A few billion lines of code later: using static

analysis to find bugs in the real world”

� Google’s static analysis tools

� Checker Framework for Java programs

� Shipshape (abandoned?) (Google Tricorder)

� CACM article, “Lessons from Building Static Analysis Tools At

Google”

� Oracle’s Soufflé

� Soufflé: Logic Defined Static Analysis

https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
https://checkerframework.org
https://github.com/google/shipshape
https://dl.acm.org/citation.cfm?id=2818828
https://cacm.acm.org/magazines/2018/4/226371-lessons-from-building-static-analysis-tools-at-google/fulltext
https://cacm.acm.org/magazines/2018/4/226371-lessons-from-building-static-analysis-tools-at-google/fulltext
https://souffle-lang.github.io/


Outline

And now for something (not so completely) different

Program Analysis in Industry

Basic Notions

Illustrating Abstract Interpretation

Postscript



Limitations

� None of these frameworks and tools can escape the fact that

analysis is an undecidable problem

� All compute approximations

� Or risk ending up intractable

� Must be designed to be sound

� Approximations are conservative/safe

� Leads to imprecision (i.e. incomplete)

� May model behaviour not in original programs

� (recall IDEAL vs MOP vs MFP)

� leads to false positives



States and Transitions

� A program’s state is a mapping of variables to values

� Programs move from one state to another

� begin execution in subset of (initial) states

� Notions of state before a program point (i.e. a statement)
and after a program point

� Also sometimes known as pre-condition and post-condition

respectively.

� Relation that maps before-states to after-states is called a
transition relation (t)

� 〈x , y〉 (x is before-state, y is after-state)



Traces

� An execution trace of a program is a sequence of states

� s0s1s2 . . . sn

� An execution trace may be finite or infinite

� s0s1s2 . . .

� The collection of partial traces can actually happen (i.e. state
transitions obey the transition relation) is called the collecting
semantics

� I.e. for all si sj in trace, 〈si , sj〉 ∈ t



Example

x = 0
while(x < 100)

x = x + 1;

� states are Z

� initial state is 0

� transition relation is {〈x , x ′〉|x < 100 ∧ x ′ = x + 1}
� is 0 1 2 3 part of the collecting semantics?

� is 0 2 4 6 part of the collecting semantics?

Patrick Cousot and Radhia Cousot, Basic Concepts of Abstract Interpretation



What can we do with the concrete semantics?

� By examining the (concrete) collecting semantics, we can
check various “properties”

� We’ll formalize “property” later.

� Problems with using the concrete semantics:

� The previous example had a single state in initial set {0}, this

is not always true. Consider x = randint()

� How do we deal with infinite loops?

� How do we deal with alternate paths (i.e. conditionals)?

� How do we get the concrete semantics for all programs

statically?

� Implementation issues:

� Even if we could get a concrete semantics, how large would it

be?



Outline

And now for something (not so completely) different

Program Analysis in Industry

Basic Notions

Illustrating Abstract Interpretation

Postscript



A Graphical Programming Language1

Consider a simple language with the following constructs:

� init(R) where R is a region in 2D space

� e.g. init({(x , y)|(x , y) ∈ R})
� This chooses a single point in R non-deterministically

� A program must always start with init

� translate(dx, dy) moves the point by dx in the
X-direction, and dy in the Y-direction

� e.g. translate(1.0, 0.5) moves the point to the right and

up in the Cartesian plane

� rotate(angle) rotates the point by angle about the origin

� e.g. rotate(90) will move a point on the X-axis to a point on

the Y-axis

1This exposition is based on Chapter 2 of Rival and Yi (see Postscript)



Grammar

P = init(R) ’;’ Rest
Rest = translate(dx, dy)

| rotate (a)
| ’{’ Rest ’}’ or ’{’ Rest ’}’
| iter ’{’ Rest ’}’
| Rest ’;’ Rest
| Empty

Empty =

� A program begins with init and is followed by statements in

Rest

� The or construct is a non-deterministic choice

� It executes the block (delimited by braces) on the right or the

block on the left

� Simulates a conditional

� The iter either executes the code inside the block or moves
to the next statement

� Simulates a loop

� Note, iter can execute the block forever!



An Example Program

init([0, 1]x[0, 1]);
translate(1, 0);
iter {

{
translate(1, 0);

} or {
rotate(90);

}
}



Property we’re interested in

Can x ever become negative?

� Can be represented by the set xneg = {(x , y)|x < 0}
� Problems with concrete execution approach:

� Infinite initial states (R = {(x , y)|0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1}
� Conditionals that perform translation or rotation

� Loop may be infinite

� But if we could obtain the set of states in all possible concrete
executions, say xconc , we need to show

� xconc ∩ xneg = ∅



Abstract Execution: Approximating Concrete Executions

� Abstract interpretation is a framework for performing program

analysis

� Key ideas:

� Abstract domain: Set of properties we’re interested in

� Abstraction function: Converts a concrete state to an element

of the abstract domain

� Transfer functions: Transforms an abstract state before a

statement to an abstract state after the statement

� Union/Join: Combines abstract states from alternate paths

� Widen (∇): Combines abstract state across loop iterations



Abstract Domains

� For the property we’re interested in, we only need the sign of x

� Potential abstract domain, signs-x

� Only tracks x < 0, x ∈ R

� Can only answer questions about this property, and about x

� Another abstract domain, track signs of all state variables

� Tracks {x < 0, x ≥ 0, x ∈ R} × {y < 0, y ≥ 0, y ∈ R}
� Abstract domain for the rest of the lecture: Intervals

� For each state variable, track lv and hv such that lv ≤ v ≤ hv
� For the graphical language, lx ≤ x ≤ hx , ly ≤ y ≤ hy
� Thus, our abstraction approximates states using rectangles

� The sides of the rectangle are parallel to the axes

� lv and hv can be −∞ and ∞ respectively to represent

unbounded “rectangles”



Abstract Execution Using Intervals: init

init([0, 1]x[0, 1])

Concrete execution will give us a point in that rectangular region.

� Our abstract state after init will be:

� lx = 0

� hx = 1

� ly = 0

� hy = 1

� The transfer function for init computes the rectangle that

covers the region

� In this case, the abstraction is precise



Abstract Execution Using Intervals: translate

translate(1.0, 0.5)

� Our abstract state after
translate will be:

� lx = lx + 1.0 = 0.5

� hx = hx + 1.0 = 2

� ly = ly + 0.5 = 0.5

� hy = hy + 0.5 = 1.5

� The transfer function for
translate shifts the
current abstract state

� The resulting abstract

state is still precise



Abstract Execution Using Intervals: rotate

rotate(45)

� Our rectangle after rotate will be:

� lx1 , ly1 = rotate((lx , ly ), 45)

� hx1 , ly2 = rotate((hx , ly ), 45)

� lx2 , hy1 = rotate((lx , hy ), 45)

� hx2 , hy2 = rotate((hx , hy ), 45)

� The transfer function for rotate rotates the corners of the
rectangle

� The result is still a rectangle, but cannot always be represented

using intervals

� So it is not an abstract state



Finding a new interval in the abstract domain

� Let c ′ be a co-ordinate after
rotate computed as in the
previous slide, then

� lx = min(lx1 , lx2 , hx1 , hx2)

� hx = max(lx1 , lx2 , hx1 , hx2)

� ly = min(ly1 , ly2 , hy1 , hy2)

� hy = max(ly1 , ly2 , hy1 , hy2)

� Obviously, in general, this
new interval contains more
states than the rotated
rectangle

� We have lost precision

� But, the new

interval/rectangle we have

calculated is the “best fit”



A note on domains

� Intervals (and signs) are non-relational domains

� They can’t capture relations between x and y

� e.g., a property that x > y

� Intervals also can’t capture complex regions

� A more complicated abstract domain: convex polyhedra

� A list of linear inequalities

� Region is the feasible region (i.e. points that satisfy all the

inequalities)

� Convex polyhedra support relational properties, e.g. x − y < 2

� During program analysis you must choose the domain that

most efficiently captures the property of interest



Handling Compound Statements

� Let the transfer function be called analysis(stmt,

pre-condition)

� So far, we’ve defined:

� analysis(init, I) (where I is the state on entry)

� analysis(translate, a) where a is the state before

translate

� analysis(rotate, a) where a is the state before rotate

� Let’s now define analysis(p1 ; p2, a)

� The analysis of two statements p1 and p2, with pre-condition a

� Note that pre-condition for p2 is the post-condition of p1, so

� analysis(p1 ; p2, a) is then analysis(p2,

analysis(p1, a))



Handling conditionals: Union (Join)

{translate(1.0, 0)} or {translate(0, 1.0)}

� Program could execute either left part or right part

� Two possible abstract states, disjoint

� Resulting abstract state must incorporate both

� Union the two abstract states

� analysis(p1 or p2, a) is:

� analysis(p1, a) ∪ analysis(p2, a)

� The resulting abstract state is also, in general, imprecise



Union for Intervals

� For a1 ∪ a2

� lx = min(lx1 , lx2)

� hx = max(hx1 , hx2)

� ly = min(ly1 , ly2)

� hy = max(hy1 , hy2)



Handling Loops

iter {b}

can be written as:

{} # loop executes 0 times
{} or {b} # loop executes 1 time
{} or {b} or {b;b} # loop executes 2 times
{} or {b} or {b;b} or {b;b;b} # loop executes 3 times
...

This can be written (recursively) as: pk+1 = pkor{pk ; b}, where:

� p0 is {}
� p1 is {} or {b}
� p2 is {} or {b} or {b; b} and so on...



Iterating

analysis(iter {b}, a)

can be defined as an interative algorithm:

R = a
do

T = R
R = union(R, analysis(b, R)) # analysis for or

while R != T

Will this always terminate?



Example

init([0, 1] x [0, 1])
translate(1, 0)
iter { translate(0, 1) }

� The analysis of this code will not terminate!

� Abstract state before iter

� 1 ≤ x ≤ 2, 0 ≤ y ≤ 1

� After first union:

� 1 ≤ x ≤ 2, 0 ≤ y ≤ 1 ∪ 1 ≤ x ≤ 2, 1 ≤ y ≤ 2

� Result: 1 ≤ x ≤ 2, 0 ≤ y ≤ 2

� After second union: 1 ≤ x ≤ 2, 0 ≤ y ≤ 3

� And so on ...

� the hy bound keeps increasing without bound



The Widen operator

� We note that the interval 0 ≤ y ≤ ∞ would overapproximate

0 ≤ y ≤ n where n is not ∞
� If we obtained this interval in our abstract state, we could

terminate because hy would “stop increasing”

� 0 ≤ y ≤ ∞ already includes all possible abstract states of the

form 0 ≤ y ≤ n

� Union would no longer return a different result ensuring

termination

� So widen (∇) is an operator that overapproximates unions

� Its primary purpose is to ensure convergence



Analyzing loops using widen

R = a
do

T = R
R = widen(R, analysis(b, R))

until inclusion(R, T) # i.e. R is included in T
return T



Widen for Intervals

def widen(a, b):
out = union(a, b)

if a.lx != b.lx:
out.lx = -inf

if a.hx != b.hx:
out.hx = inf

if a.ly != b.ly:
out.ly = -inf

if a.hy != b.hy:
out.hy = inf



Putting it all together

� Each time analysis is applied, we obtain an abstract state a

� If a overlaps with xneg , then we have detected a violation of

our property



Outline

And now for something (not so completely) different

Program Analysis in Industry

Basic Notions

Illustrating Abstract Interpretation

Postscript



References

� This lecture follows the exposition in Chapter 2 of the book
“An Introduction to Static Analysis: An Abstract
Interpretation Perspective” by Xavier Rival and Kwangkeun
Yi, MIT Press, 2020

� The library has print copies

� Suggest buying this book – it is self-contained and reasonably

priced

� Prof. Cousot has a number of tutorials, I’ll post links to them
in the next lecture

� Prof. Patrick Cousot and Prof. Radhia Cousot invented

abstract interpretation


	And now for something (not so completely) different
	Program Analysis in Industry
	Basic Notions
	Illustrating Abstract Interpretation
	Postscript

