CSC2/455 Software Analysis and Improvement Program Analysis/Abstract Interpretation

Sreepathi Pai

Mar 28, 2022

URCS

Program Analysis in Industry

Basic Notions

Illustrating Abstract Interpretation

Program Analysis in Industry

Basic Notions

Illustrating Abstract Interpretation

- Data flow analysis
 - Iterative data flow analysis
 - Region-based analysis
- Loop analysis
- Type Checking
- What next?

- Compilers are probably the most used program analyzers
- But are severely time constrained
- Finding program errors is not primary goal
 - Syntax errors, type errors
 - Code generation primary goal

- Software is increasingly mission-critical
- Can kill people!
 - Boeing 737 MAX(?)
 - Therac-25 (X-ray)
 - Industrial Robotics
- (less extreme?) Can lose money
 - Software crashes
 - Data loss
- Can we analyze programs for *functional* correctness?
 - Topic of the next few lectures

Program Analysis in Industry

Basic Notions

Illustrating Abstract Interpretation

SLAM (Microsoft, early 2000s)

- MS isolated most crashes to buggy drivers
- Static Driver Verifier project
 - Would verify driver code (in C) for correctness
- Used model checking
 - Models programs as finite-state machines
 - I used a similar tool (CBMC) to check your assignments

Infer (Facebook)

- $\bullet\,$ Checks C, C++, Objective C, Java and Android code
- Used for checking Facebook's mobile apps
- Open source, https://fbinfer.com/
 - Used by Amazon, Mozilla, Uber and Facebook and its affiliates, JD.com, etc.
- Comes with its own language AL (OCaml-derivative?) to describe analyses
 - Analyzes programs in SIL ("Smallfoot Intermediate Language")
- Uses abstract interpretation + *separation logic*
 - Abstract interpretation very similar to data flow analysis frameworks
- CACM Article: Scaling Static Analyses at Facebook
- Good video: Getting the most out of static analyzers

SPARTA (Facebook)

- Language-independent analyzer
 - a C++ framework
- Open source, https://code.fb.com/ open-source/sparta/
- Used in FB's RedEx tools
 - for analyzing Android binary code (.dex)
- Also uses *abstract interpretation*

- Stanford Checker
 - commercialized by Coverity, late 2000s
 - CACM article, "A few billion lines of code later: using static analysis to find bugs in the real world"
- Google's static analysis tools
 - Checker Framework for Java programs
 - Shipshape (abandoned?) (Google Tricorder)
 - CACM article, "Lessons from Building Static Analysis Tools At Google"
- Oracle's Soufflé
 - Soufflé: Logic Defined Static Analysis

Program Analysis in Industry

Basic Notions

Illustrating Abstract Interpretation

- None of these frameworks and tools can escape the fact that analysis is an undecidable problem
- All compute approximations
 - Or risk ending up intractable
- Must be designed to be *sound*
 - Approximations are conservative/safe
- Leads to imprecision (i.e. incomplete)
 - May model behaviour not in original programs
 - (recall IDEAL vs MOP vs MFP)
 - leads to false positives

- A program's state is a mapping of variables to values
- Programs move from one state to another
 - begin execution in subset of (initial) states
- Notions of state *before* a program point (i.e. a statement) and *after* a program point
 - Also sometimes known as *pre-condition* and *post-condition* respectively.
- Relation that maps before-states to after-states is called a *transition* relation (*t*)
 - $\langle x, y \rangle$ (x is before-state, y is after-state)

- An execution trace of a program is a sequence of states
 - $s_0 s_1 s_2 \dots s_n$
- An execution trace may be finite or infinite
 - $s_0 s_1 s_2 \ldots$
- The collection of partial traces can actually happen (i.e. state transitions obey the transition relation) is called the *collecting semantics*
 - I.e. for all $s_i s_j$ in trace, $\langle s_i, s_j
 angle \in t$

x = 0
while(x < 100)
 x = x + 1;</pre>

- states are $\ensuremath{\mathbb{Z}}$
- initial state is 0
- transition relation is $\{\langle x, x' \rangle | x < 100 \land x' = x + 1\}$
- is 0123 part of the collecting semantics?
- is 0246 part of the collecting semantics?

Patrick Cousot and Radhia Cousot, Basic Concepts of Abstract Interpretation

- By examining the (concrete) collecting semantics, we can check various "properties"
 - We'll formalize "property" later.
- Problems with using the concrete semantics:
 - The previous example had a single state in initial set {0}, this is not always true. Consider x = randint()
 - How do we deal with infinite loops?
 - How do we deal with alternate paths (i.e. conditionals)?
 - How do we get the concrete semantics for all programs statically?
- Implementation issues:
 - Even if we could get a concrete semantics, how large would it be?

Program Analysis in Industry

Basic Notions

Illustrating Abstract Interpretation

Consider a simple language with the following constructs:

- init(R) where R is a region in 2D space
 - e.g. $init(\{(x, y) | (x, y) \in R\})$
 - This chooses a single point in R non-deterministically
 - A program must always start with init
- translate(dx, dy) moves the point by dx in the X-direction, and dy in the Y-direction
 - e.g. translate(1.0, 0.5) moves the point to the right and up in the Cartesian plane
- rotate(angle) rotates the point by angle about the origin
 - e.g. rotate(90) will move a point on the X-axis to a point on the Y-axis

¹This exposition is based on Chapter 2 of Rival and Yi (see Postscript)

Grammar

- A program begins with init and is followed by statements in *Rest*
- The or construct is a non-deterministic choice
 - It executes the block (delimited by braces) on the right or the block on the left
 - Simulates a conditional
- The iter either executes the code inside the block or moves to the next statement
 - Simulates a loop
 - Note, iter can execute the block forever!

An Example Program

```
init([0, 1]x[0, 1]);
translate(1, 0);
iter {
        {
            translate(1, 0);
        } or {
               rotate(90);
        }
}
```


Can x ever become negative?

- Can be represented by the set $x_{neg} = \{(x, y) | x < 0\}$
- Problems with concrete execution approach:
 - Infinite initial states $(R = \{(x, y) | 0 \le x \le 1 \land 0 \le y \le 1\}$
 - Conditionals that perform translation or rotation
 - Loop may be infinite
- But if we could obtain the set of states in all possible concrete executions, say *x_{conc}*, we need to show
 - $x_{conc} \cap x_{neg} = \emptyset$

- Abstract interpretation is a framework for performing program analysis
- Key ideas:
 - Abstract domain: Set of properties we're interested in
 - Abstraction function: Converts a concrete state to an element of the abstract domain
 - Transfer functions: Transforms an abstract state before a statement to an abstract state after the statement
 - Union/Join: Combines abstract states from alternate paths
 - Widen (∇): Combines abstract state across loop iterations

Abstract Domains

- $\bullet\,$ For the property we're interested in, we only need the sign of x
- Potential abstract domain, signs-x
 - Only tracks x < 0, $x \in R$
 - Can only answer questions about this property, and about x
- Another abstract domain, track signs of all state variables
 - Tracks $\{x < 0, x \ge 0, x \in R\} \times \{y < 0, y \ge 0, y \in R\}$
- Abstract domain for the rest of the lecture: Intervals
 - For each state variable, track l_v and h_v such that $l_v \leq v \leq h_v$
 - For the graphical language, $l_x \leq x \leq h_x$, $l_y \leq y \leq h_y$
 - Thus, our abstraction approximates states using rectangles
 - The sides of the rectangle are parallel to the axes
 - $l_{\rm v}$ and $h_{\rm v}$ can be $-\infty$ and ∞ respectively to represent unbounded "rectangles"

init([0, 1]x[0, 1])

Concrete execution will give us a point in that rectangular region.

- Our abstract state after init will be:
 - *l_x* = 0
 - $h_x = 1$
 - $l_y = 0$
 - $h_y = 1$
- The transfer function for init computes the rectangle that covers the region
- In this case, the abstraction is precise

translate(1.0, 0.5)

- Our abstract state after translate will be:
 - $l_x = l_x + 1.0 = 0.5$
 - $h_x = h_x + 1.0 = 2$
 - $l_y = l_y + 0.5 = 0.5$
 - $h_y = h_y + 0.5 = 1.5$
- The transfer function for translate shifts the current abstract state
 - The resulting abstract state is still precise

rotate(45)

- Our rectangle after rotate will be:
 - $I_{x_1}, I_{y_1} = rotate((I_x, I_y), 45)$
 - $h_{x_1}, l_{y_2} = rotate((h_x, l_y), 45)$
 - $l_{x_2}, h_{y_1} = rotate((l_x, h_y), 45)$
 - $h_{x_2}, h_{y_2} = rotate((h_x, h_y), 45)$
- The transfer function for rotate rotates the corners of the rectangle
 - The result is still a rectangle, but cannot always be represented using intervals
 - So it is not an abstract state

Finding a new interval in the abstract domain

- Let c' be a co-ordinate after rotate computed as in the previous slide, then
 - $l_x = min(l_{x_1}, l_{x_2}, h_{x_1}, h_{x_2})$
 - $h_x = max(I_{x_1}, I_{x_2}, h_{x_1}, h_{x_2})$
 - $l_y = min(l_{y_1}, l_{y_2}, h_{y_1}, h_{y_2})$
 - $h_y = max(l_{y_1}, l_{y_2}, h_{y_1}, h_{y_2})$
- Obviously, in general, this new interval contains more states than the rotated rectangle
 - We have lost precision
- But, the new

interval/rectangle we have calculated is the "best fit"

- Intervals (and signs) are non-relational domains
 - They can't capture relations between x and y
 - e.g., a property that x > y
- Intervals also can't capture complex regions
- A more complicated abstract domain: convex polyhedra
 - A list of linear inequalities
 - Region is the feasible region (i.e. points that satisfy all the inequalities)
 - Convex polyhedra support relational properties, e.g. x y < 2
- During program analysis you must choose the domain that most efficiently captures the property of interest

Handling Compound Statements

- Let the transfer function be called analysis(stmt, pre-condition)
- So far, we've defined:
 - analysis(init, I) (where / is the state on entry)
 - analysis(translate, a) where *a* is the state before translate
 - analysis(rotate, a) where *a* is the state before rotate
- Let's now define analysis(p1 ; p2, a)
 - The analysis of two statements p1 and p2, with pre-condition a
 - Note that pre-condition for p2 is the post-condition of p1, so
 - analysis(p1 ; p2, a) is then analysis(p2, analysis(p1, a))

Handling conditionals: Union (Join)

{translate(1.0, 0)} or {translate(0, 1.0)}

- Program could execute either left part or right part
- Two possible abstract states, disjoint
- Resulting abstract state must incorporate both
 - Union the two abstract states
- analysis(p1 or p2, a) is:
 - analysis(p1, a) \cup analysis(p2, a)
- The resulting abstract state is also, in general, imprecise

- For $a_1 \cup a_2$
 - $I_x = min(I_{x_1}, I_{x_2})$
 - $h_x = max(h_{x_1}, h_{x_2})$
 - $l_y = min(l_{y_1}, l_{y_2})$
 - $h_y = max(h_{y_1}, h_{y_2})$

iter {b}

can be written as:

This can be written (recursively) as: $p_{k+1} = p_k \operatorname{or} \{p_k; b\}$, where:

- *p*₀ is {}
- *p*₁ is {} or {b}
- p_2 is {} or {b} or {b; b} and so on...

```
analysis(iter {b}, a)
```

can be defined as an interative algorithm:

```
R = a
do
T = R
R = union(R, analysis(b, R)) # analysis for or
while R != T
```

Will this always terminate?

Example

```
init([0, 1] x [0, 1])
translate(1, 0)
iter { translate(0, 1) }
```

- The analysis of this code will not terminate!
- Abstract state before iter
 - $1 \le x \le 2, \ 0 \le y \le 1$
- After first union:
 - $1 \le x \le 2, \ 0 \le y \le 1 \cup 1 \le x \le 2, \ 1 \le y \le 2$
 - Result: $1 \le x \le 2$, $0 \le y \le 2$
- After second union: $1 \le x \le 2$, $0 \le y \le 3$
- And so on ...
 - the hy bound keeps increasing without bound

- We note that the interval $0 \le y \le \infty$ would overapproximate $0 \le y \le n$ where *n* is not ∞
- If we obtained this interval in our abstract state, we could terminate because h_y would "stop increasing"
 - $0 \le y \le \infty$ already includes all possible abstract states of the form $0 \le y \le n$
 - Union would no longer return a different result ensuring termination
- So widen (∇) is an operator that overapproximates unions
 - Its primary purpose is to ensure convergence

```
R = a
do
T = R
R = widen(R, analysis(b, R))
until inclusion(R, T) # i.e. R is included in T
return T
```

```
def widen(a, b):
    out = union(a, b)
    if a.lx != b.lx:
        out.lx = -inf
    if a.hx != b.hx:
        out.hx = inf
    if a.ly != b.ly:
        out.ly = -inf
    if a.hy != b.hy:
        out.hy = inf
```

- Each time analysis is applied, we obtain an abstract state a
- If a overlaps with x_{neg}, then we have detected a violation of our property

Program Analysis in Industry

Basic Notions

Illustrating Abstract Interpretation

- This lecture follows the exposition in Chapter 2 of the book "An Introduction to Static Analysis: An Abstract Interpretation Perspective" by Xavier Rival and Kwangkeun Yi, MIT Press, 2020
 - The library has print copies
 - Suggest buying this book it is self-contained and reasonably priced
- Prof. Cousot has a number of tutorials, I'll post links to them in the next lecture
 - Prof. Patrick Cousot and Prof. Radhia Cousot invented abstract interpretation