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So far

� Data flow analysis

� Iterative data flow analysis

� Region-based analysis

� Loop analysis

� Type Checking

� What next?



Compilers are not the only program analyzers

� Compilers are probably the most used program analyzers

� But are severely time constrained

� Finding program errors is not primary goal

� Syntax errors, type errors

� Code generation primary goal



Program/Software Analysis

� Software is increasingly mission-critical

� Can kill people!

� Boeing 737 MAX(?)

� Therac-25 (X-ray)

� Industrial Robotics

� (less extreme?) Can lose money

� Software crashes

� Data loss

� Can we analyze programs for functional correctness?

� Topic of the next few lectures
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SLAM (Microsoft, early 2000s)

� MS isolated most crashes to

buggy drivers

� Static Driver Verifier project

� Would verify driver code

(in C) for correctness

� Used model checking

� Models programs as

finite-state machines

� I used a similar tool

(CBMC) to check your

assignments

https://www.cprover.org/cbmc/


Infer (Facebook)

� Checks C, C++, Objective C, Java and Android code

� Used for checking Facebook’s mobile apps

� Open source, https://fbinfer.com/

� Used by Amazon, Mozilla, Uber and Facebook and its

affiliates, JD.com, etc.

� Comes with its own language AL (OCaml-derivative?) to
describe analyses

� Analyzes programs in SIL (“Smallfoot Intermediate Language”)

� Uses abstract interpretation + separation logic

� Abstract interpretation very similar to data flow analysis

frameworks

� CACM Article: Scaling Static Analyses at Facebook

� Good video: Getting the most out of static analyzers

https://fbinfer.com/
https://cacm.acm.org/magazines/2019/8/238344-scaling-static-analyses-at-facebook/fulltext
https://atscaleconference.com/videos/getting-the-most-out-of-static-analyzers


SPARTA (Facebook)

� Language-independent
analyzer

� a C++ framework

� Open source,

https://code.fb.com/

open-source/sparta/

� Used in FB’s RedEx tools

� for analyzing Android

binary code (.dex)

� Also uses abstract

interpretation

https://code.fb.com/open-source/sparta/
https://code.fb.com/open-source/sparta/


Other efforts

� Stanford Checker

� commercialized by Coverity, late 2000s

� CACM article, “A few billion lines of code later: using static

analysis to find bugs in the real world”

� Google’s static analysis tools

� Checker Framework for Java programs

� Shipshape (abandoned?) (Google Tricorder)

� CACM article, “Lessons from Building Static Analysis Tools At

Google”

� Oracle’s Soufflé

� Soufflé: Logic Defined Static Analysis

https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
https://checkerframework.org
https://github.com/google/shipshape
https://dl.acm.org/citation.cfm?id=2818828
https://cacm.acm.org/magazines/2018/4/226371-lessons-from-building-static-analysis-tools-at-google/fulltext
https://cacm.acm.org/magazines/2018/4/226371-lessons-from-building-static-analysis-tools-at-google/fulltext
https://souffle-lang.github.io/
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Limitations

� None of these frameworks and tools can escape the fact that

analysis is an undecidable problem

� All compute approximations

� Or risk ending up intractable

� Must be designed to be sound

� Approximations are conservative/safe

� Leads to imprecision (i.e. incomplete)

� May model behaviour not in original programs

� (recall IDEAL vs MOP vs MFP)

� leads to false positives



States and Transitions

� A program’s state is a mapping of variables to values

� Programs move from one state to another

� begin execution in subset of (initial) states

� Notions of state before a program point (i.e. a statement)
and after a program point

� Also sometimes known as pre-condition and post-condition

respectively.

� Relation that maps before-states to after-states is called a
transition relation (t)

� 〈x , y〉 (x is before-state, y is after-state)



Traces

� An execution trace of a program is a sequence of states

� s0s1s2 . . . sn

� An execution trace may be finite or infinite

� s0s1s2 . . .

� The collection of partial traces can actually happen (i.e. state
transitions obey the transition relation) is called the collecting
semantics

� I.e. for all si sj in trace, 〈si , sj〉 ∈ t



Example

x = 0
while(x < 100)

x = x + 1;

� states are Z

� initial state is 0

� transition relation is {〈x , x ′〉|x < 100 ∧ x ′ = x + 1}
� is 0 1 2 3 part of the collecting semantics?

� is 0 2 4 6 part of the collecting semantics?

Patrick Cousot and Radhia Cousot, Basic Concepts of Abstract Interpretation



What can we do with the concrete semantics?

� By examining the (concrete) collecting semantics, we can
check various “properties”

� We’ll formalize “property” later.

� Problems with using the concrete semantics:

� The previous example had a single state in initial set {0}, this

is not always true. Consider x = randint()

� How do we deal with infinite loops?

� How do we deal with alternate paths (i.e. conditionals)?

� How do we get the concrete semantics for all programs

statically?

� Implementation issues:

� Even if we could get a concrete semantics, how large would it

be?
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A Graphical Programming Language1

Consider a simple language with the following constructs:

� init(R) where R is a region in 2D space

� e.g. init({(x , y)|(x , y) ∈ R})
� This chooses a single point in R non-deterministically

� A program must always start with init

� translate(dx, dy) moves the point by dx in the
X-direction, and dy in the Y-direction

� e.g. translate(1.0, 0.5) moves the point to the right and

up in the Cartesian plane

� rotate(angle) rotates the point by angle about the origin

� e.g. rotate(90) will move a point on the X-axis to a point on

the Y-axis

1This exposition is based on Chapter 2 of Rival and Yi (see Postscript)



Grammar

P = init(R) ’;’ Rest
Rest = translate(dx, dy)

| rotate (a)
| ’{’ Rest ’}’ or ’{’ Rest ’}’
| iter ’{’ Rest ’}’
| Rest ’;’ Rest
| Empty

Empty =

� A program begins with init and is followed by statements in

Rest

� The or construct is a non-deterministic choice

� It executes the block (delimited by braces) on the right or the

block on the left

� Simulates a conditional

� The iter either executes the code inside the block or moves
to the next statement

� Simulates a loop

� Note, iter can execute the block forever!



An Example Program

init([0, 1]x[0, 1]);
translate(1, 0);
iter {

{
translate(1, 0);

} or {
rotate(90);

}
}



Property we’re interested in

Can x ever become negative?

� Can be represented by the set xneg = {(x , y)|x < 0}
� Problems with concrete execution approach:

� Infinite initial states (R = {(x , y)|0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1}
� Conditionals that perform translation or rotation

� Loop may be infinite

� But if we could obtain the set of states in all possible concrete
executions, say xconc , we need to show

� xconc ∩ xneg = ∅



Abstract Execution: Approximating Concrete Executions

� Abstract interpretation is a framework for performing program

analysis

� Key ideas:

� Abstract domain: Set of properties we’re interested in

� Abstraction function: Converts a concrete state to an element

of the abstract domain

� Transfer functions: Transforms an abstract state before a

statement to an abstract state after the statement

� Union/Join: Combines abstract states from alternate paths

� Widen (∇): Combines abstract state across loop iterations



Abstract Domains

� For the property we’re interested in, we only need the sign of x

� Potential abstract domain, signs-x

� Only tracks x < 0, x ∈ R

� Can only answer questions about this property, and about x

� Another abstract domain, track signs of all state variables

� Tracks {x < 0, x ≥ 0, x ∈ R} × {y < 0, y ≥ 0, y ∈ R}
� Abstract domain for the rest of the lecture: Intervals

� For each state variable, track lv and hv such that lv ≤ v ≤ hv
� For the graphical language, lx ≤ x ≤ hx , ly ≤ y ≤ hy
� Thus, our abstraction approximates states using rectangles

� The sides of the rectangle are parallel to the axes

� lv and hv can be −∞ and ∞ respectively to represent

unbounded “rectangles”



Abstract Execution Using Intervals: init

init([0, 1]x[0, 1])

Concrete execution will give us a point in that rectangular region.

� Our abstract state after init will be:

� lx = 0

� hx = 1

� ly = 0

� hy = 1

� The transfer function for init computes the rectangle that

covers the region

� In this case, the abstraction is precise



Abstract Execution Using Intervals: translate

translate(1.0, 0.5)

� Our abstract state after
translate will be:

� lx = lx + 1.0 = 0.5

� hx = hx + 1.0 = 2

� ly = ly + 0.5 = 0.5

� hy = hy + 0.5 = 1.5

� The transfer function for
translate shifts the
current abstract state

� The resulting abstract

state is still precise



Abstract Execution Using Intervals: rotate

rotate(45)

� Our rectangle after rotate will be:

� lx1 , ly1 = rotate((lx , ly ), 45)

� hx1 , ly2 = rotate((hx , ly ), 45)

� lx2 , hy1 = rotate((lx , hy ), 45)

� hx2 , hy2 = rotate((hx , hy ), 45)

� The transfer function for rotate rotates the corners of the
rectangle

� The result is still a rectangle, but cannot always be represented

using intervals

� So it is not an abstract state



Finding a new interval in the abstract domain

� Let c ′ be a co-ordinate after
rotate computed as in the
previous slide, then

� lx = min(lx1 , lx2 , hx1 , hx2)

� hx = max(lx1 , lx2 , hx1 , hx2)

� ly = min(ly1 , ly2 , hy1 , hy2)

� hy = max(ly1 , ly2 , hy1 , hy2)

� Obviously, in general, this
new interval contains more
states than the rotated
rectangle

� We have lost precision

� But, the new

interval/rectangle we have

calculated is the “best fit”



A note on domains

� Intervals (and signs) are non-relational domains

� They can’t capture relations between x and y

� e.g., a property that x > y

� Intervals also can’t capture complex regions

� A more complicated abstract domain: convex polyhedra

� A list of linear inequalities

� Region is the feasible region (i.e. points that satisfy all the

inequalities)

� Convex polyhedra support relational properties, e.g. x − y < 2

� During program analysis you must choose the domain that

most efficiently captures the property of interest



Handling Compound Statements

� Let the transfer function be called analysis(stmt,

pre-condition)

� So far, we’ve defined:

� analysis(init, I) (where I is the state on entry)

� analysis(translate, a) where a is the state before

translate

� analysis(rotate, a) where a is the state before rotate

� Let’s now define analysis(p1 ; p2, a)

� The analysis of two statements p1 and p2, with pre-condition a

� Note that pre-condition for p2 is the post-condition of p1, so

� analysis(p1 ; p2, a) is then analysis(p2,

analysis(p1, a))



Handling conditionals: Union (Join)

{translate(1.0, 0)} or {translate(0, 1.0)}

� Program could execute either left part or right part

� Two possible abstract states, disjoint

� Resulting abstract state must incorporate both

� Union the two abstract states

� analysis(p1 or p2, a) is:

� analysis(p1, a) ∪ analysis(p2, a)

� The resulting abstract state is also, in general, imprecise



Union for Intervals

� For a1 ∪ a2

� lx = min(lx1 , lx2)

� hx = max(hx1 , hx2)

� ly = min(ly1 , ly2)

� hy = max(hy1 , hy2)



Handling Loops

iter {b}

can be written as:

{} # loop executes 0 times
{} or {b} # loop executes 1 time
{} or {b} or {b;b} # loop executes 2 times
{} or {b} or {b;b} or {b;b;b} # loop executes 3 times
...

This can be written (recursively) as: pk+1 = pkor{pk ; b}, where:

� p0 is {}
� p1 is {} or {b}
� p2 is {} or {b} or {b; b} and so on...



Iterating

analysis(iter {b}, a)

can be defined as an interative algorithm:

R = a
do

T = R
R = union(R, analysis(b, R)) # analysis for or

while R != T

Will this always terminate?



Example

init([0, 1] x [0, 1])
translate(1, 0)
iter { translate(0, 1) }

� The analysis of this code will not terminate!

� Abstract state before iter

� 1 ≤ x ≤ 2, 0 ≤ y ≤ 1

� After first union:

� 1 ≤ x ≤ 2, 0 ≤ y ≤ 1 ∪ 1 ≤ x ≤ 2, 1 ≤ y ≤ 2

� Result: 1 ≤ x ≤ 2, 0 ≤ y ≤ 2

� After second union: 1 ≤ x ≤ 2, 0 ≤ y ≤ 3

� And so on ...

� the hy bound keeps increasing without bound



The Widen operator

� We note that the interval 0 ≤ y ≤ ∞ would overapproximate

0 ≤ y ≤ n where n is not ∞
� If we obtained this interval in our abstract state, we could

terminate because hy would “stop increasing”

� 0 ≤ y ≤ ∞ already includes all possible abstract states of the

form 0 ≤ y ≤ n

� Union would no longer return a different result ensuring

termination

� So widen (∇) is an operator that overapproximates unions

� Its primary purpose is to ensure convergence



Analyzing loops using widen

R = a
do

T = R
R = widen(R, analysis(b, R))

until inclusion(R, T) # i.e. R is included in T
return T



Widen for Intervals

def widen(a, b):
out = union(a, b)

if a.lx != b.lx:
out.lx = -inf

if a.hx != b.hx:
out.hx = inf

if a.ly != b.ly:
out.ly = -inf

if a.hy != b.hy:
out.hy = inf



Putting it all together

� Each time analysis is applied, we obtain an abstract state a

� If a overlaps with xneg , then we have detected a violation of

our property
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References

� This lecture follows the exposition in Chapter 2 of the book
“An Introduction to Static Analysis: An Abstract
Interpretation Perspective” by Xavier Rival and Kwangkeun
Yi, MIT Press, 2020

� The library has print copies

� Suggest buying this book – it is self-contained and reasonably

priced

� Prof. Cousot has a number of tutorials, I’ll post links to them
in the next lecture

� Prof. Patrick Cousot and Prof. Radhia Cousot invented

abstract interpretation
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