
CSC2/455 Software Analysis and

Improvement

An Introduction to SAT/SMT Solvers

Sreepathi Pai

April 11, 2022

URCS

Outline

Introduction

SAT Solving

SMT Solvers

Applications to Program Analysis

Outline

Introduction

SAT Solving

SMT Solvers

Applications to Program Analysis

So far

� So far:

� Iterative Data Flow Analysis

� Type Analysis

� Region Analysis

� Abstract Interpretation

� Today

� Satisfiability (SAT) Solvers

� Satisfiability Modulo Theories (SMT) Solvers

� Next:

� Model Checking

� Symbolic Execution

� Hoare Logic

Outline

Introduction

SAT Solving

SMT Solvers

Applications to Program Analysis

The Satisfiability (SAT) Problem

Given a formula in propositional logic (variables, true, false, ∧, ∨,

¬, and parentheses), is there an assignment to variables that

makes the formula true?

� (A ∨ B ∨ C) ∧ (¬A ∨ B) (conjunctive normal form, CNF)

� (A ∧ B ∧ C) ∨ (¬A ∧ B) (disjunctive normal form, DNF)

� A ∧ ¬A (CNF)

Solutions

� (A ∨ B ∨ C) ∧ (¬A ∨ B)

� B = true is required in any satisfying assignment (A and C

don’t matter)

� (A ∧ B ∧ C) ∨ (¬A ∧ B)

� A,B,C all true is one satisfying assignment

� A = false and B = true is another satisfying assignment

� A ∧ ¬A is obviously unsatisfiable

3-SAT is NP-Complete

� If the maximum number of variables in a clause of a CNF

formula is k , we call that problem k-SAT

� 2-SAT is solvable in polynomial time

� 3-SAT is NP-complete

� In worst case, must explore every possible assignment of values

to each variable

SAT Problem Sizes

� There are many good SAT solvers now available

� Based on the Davis–Putnam-Logemann-Loveland (DPLL)

algorithm

� Often enhanced with Conflict-Driven Clause Learning (CDCL)

� SAT is decidable, if untractable

� Intractability not a hindrance usually

� Can scale to very large problems

� Millions of clauses

� See: The International SAT Competition

� Applied to many hardware and software verification problems

� SAT solvers return:

� SAT: if a satisfying assignment is found (and the values that

satisfy the proposition)

� UNSAT: if no satisfying assignment exists

http://www.satcompetition.org/

Proving statements involving Propositional Logic

Prove ¬(A ∧ B) = (¬A ∨ ¬B)

A B A ∧ B P=¬(A ∧ B) ¬A ¬B Q=¬A ∨ ¬B P ⇐⇒ Q

F F F T T T T T

F T F T T F T T

T F F T F T T T

T T T F F F F T

The statement ¬(A ∧ B) = (¬A ∨ ¬B) is valid, it is true for all values of

A and B.

Proof using a SAT solver

� ¬(A ∧ B) =⇒ (¬A ∨ ¬B)

� (¬A ∨ ¬B) =⇒ ¬(A ∧ B)

� Recall that P =⇒ Q can be written as ¬P ∨ Q

� ¬¬(A ∧ B) ∨ (¬A ∨ ¬B)

� ¬(¬A ∨ ¬B) ∨ ¬(A ∧ B)

� So we have:

� R = (A ∧ B) ∨ (¬A ∨ ¬B)

� S = ¬(¬A ∨ ¬B) ∨ ¬(A ∧ B)

� For the proof, we need both R and S to be valid

� If R is valid, what can we say about the satisfiability of ¬R?

The Satisfiability of ¬R

A B P = A ∧ B ¬A ¬B Q = ¬A ∨ ¬B P ∨ Q ¬(P ∨ Q)

F F F T T T T F

F T F T F T T F

T F F F T T T F

T T T F F F T F

If R is valid, then ¬R is unsatisfiable!

� To prove a statement using a SAT solver:

� Convert the statement to propositional logic

� Negate it, and check for unsatisfiability

� Interesting corollary:

� If the formula is SAT (implying the statement is false), the

values that satisfy the statement are counter-examples

More details on SAT Solving (Book)

� Volume 4 Facsicle 6 of The

Art of Computer

Programming

More details on SAT/SMT Solving (Papers)

� Weissenbacher, Subramanyan, and Malik, Boolean

Satisfiability Solvers: Techniques and Extensions

� Barrett, Sebastinani, Sheshia and Tinelli, Satisfiability Modulo

Theories

http://www.georg.weissenbacher.name/papers/mod12.pdf
http://www.georg.weissenbacher.name/papers/mod12.pdf
https://people.eecs.berkeley.edu/~sseshia/pubdir/SMT-BookChapter.pdf
https://people.eecs.berkeley.edu/~sseshia/pubdir/SMT-BookChapter.pdf

Quantifiers, Theories

� Propositional logic can be extended with quantifiers

� ∃, existential quantifier

� ∀, universal quantifier

� This is First-order Logic (FOL)

� FOL is undecidable in general

� Both propositional logic and first-order logic are still boolean

� Can be extended with theories:

� Arithmetic: adds numbers, operators +,−,×, associativity,

commutativity, etc.

� Functions: adds f (x)

� Bitvectors: model variables containing n bits (where n > 1)

Satisfiability Modulo Theories (SMT)

� A SMT solver checks for satisfiability in a theory

� Can think of statements as propositional logic + theory

� Allows construction of “richer” statements

� Can formulate propositions over integers, reals, etc.

� Can use operators like +,−,×, etc.

� Example: ∀x ,yx > y =⇒ x + 1 > y + 1

� True over integers (Z)

� False over machine integers/bitvectors

Decidability

� Some theories are decidable

� Presburger arithmetic

� Most theories are undecidable

� However, some theories undecidable in general are decidable

over quantifier-free fragments

� So, results of a SMT solver can be:

� SAT

� UNSAT

� Don’t know (or infinite loop)

Outline

Introduction

SAT Solving

SMT Solvers

Applications to Program Analysis

Some SMT solvers

� Microsoft Z3

� Used to be available online at rise4fun/Z3

� Available in most Linux distributions

� CVC5

� Yices

� Many more...

https://github.com/Z3Prover/z3
https://rise4fun.com/Z3
https://cvc5.github.io/
https://yices.csl.sri.com/

The SMT-LIB language

� Common input/output language for most SMT solvers

� Some solvers support their own language as well

� Lisp-like

� Documented at smtlib.org

� Allows easy switching between solvers

� We will use Z3 for the most part

http://www.smtlib.org/

Encoding a problem for Z3 to solve

Let’s encode ¬R from the previous example:

(declare-fun B () Bool)
(declare-fun A () Bool)
(assert (not (or (and A B) (not A) (not B))))
(check-sat)

And we run it:

$ z3 p1.smt
unsat

Alternative: Python library

#!/usr/bin/env python3

from z3 import *

s = Solver()
A, B = Bools(’A B’)

R = Or(And(A, B), Or(Not(A), Not(B)))
notR = Not(R)

s.add(notR)
print(s.check())

print(s.sexpr()) # prints the SMTLIB code

See: Bjørner et al., Programming Z3, for a nice introduction to

programming Z3 using Python.

https://theory.stanford.edu/~nikolaj/programmingz3.html

SAT/SMT as constraint satisfaction

� The Constraint Satisfaction Problem seeks to find an
assignment of values to variables subject to constraints

� Each variable has a domain of values

� Pick a variable, assign it a value, subject to constraints

� If all variables can be assigned values, SAT else backtrack

� For SAT in propositional logic:

� Two values, True and False

� Constraint: formula must evaluate to true

Other Problems

� Dennis Yurichev’s free book “SAT/SMT by Example” is a
wonderful collection of examples

� Minesweeper

� Sudoku

� Test case generation, etc.

https://yurichev.com/SAT_SMT.html

Outline

Introduction

SAT Solving

SMT Solvers

Applications to Program Analysis

SMT Solvers in Program Analysis

� Express program behaviour in some logic

� Express program property in that logic

� Check if the property holds (i.e. is valid)

Assertions

int min(int a, int b) {
if(a < b)

return a;
else

return a;
}

int x, y, r;

r = min(x, y);

assert(r == x || r == y);
assert(r <= x && r <= y);

� These assertions test that min always returns the minimum of

x and y

� But assert executes at runtime

� We will seek to prove statically:

� ∀x,y (min(x , y) = x ∨min(x , y) = y) ∧ (min(x , y) ≤
x ∧min(x , y) ≤ y)

� over all program paths

Checking the correctness of min

from z3 import *

s = Solver()
a, b, ret = Ints(’a b ret’)
ret = If(a < b, a, a)
#ret = If(a < b, a, b) # correct
cond = And(Or(ret == a, ret ==b), And(ret <= a, ret <= b))
s.add(Not(cond))
print(s.sexpr())

if s.check() == sat:
print("Incorrect. Counterexample: ", s.model())

else:
print("Correct")

Output:

...
Incorrect. Counterexample: [b = 0, a = 1]

Proving Programs Equivalent

� If A is a source program and B is the compiled version, we
would like to prove that A = B

� This is called translation validation

� What I’ve been doing for your submissions

� Undecidable, in general

� Not interesting only to compiler writers

� If you take a piece of code and refactor it, did you break

anything?

Test Case Generation

int min(int a, int b) {
if(a < b)

return a;
else

return a;
}

int x, y, r;

r = min(1, 3);
...

� The test case (1, 3) is not sufficient to exercise all paths in the
program

� And it misses the bug!

� Can we find test cases to exercise all paths in the program?

Postscript

� SMT solvers are a marvellous piece of technology

� Learn to use one!

	Introduction
	SAT Solving
	SMT Solvers
	Applications to Program Analysis

