
CSC2/455 Software Analysis and

Improvement

Type Inference - II

Sreepathi Pai

March 22, 2022

URCS

Outline

Type Systems for Realistic Languages

Type Checking ChocoPy

Postscript

Outline

Type Systems for Realistic Languages

Type Checking ChocoPy

Postscript

Statements and Expressions

� The type system we studied in the last class was for a
functional language

� Programs consist of expressions

� All well-formed expressions have a type

� Some languages, notably imperative languages (Python, C,
etc.), differentiate between statements and expressions

� Expressions have types

� Statements do not have types

� “Procedures” do not have return values

Additional judgements for imperative languages

� Γ ` C

� C is a well-formed command (or statement) in Γ

In general, block-structured languages may have C be a block as

well.

Subtyping

� Most languages have a subtype relation

� C has unsigned short is a subtype of unsigned int

� Subtypes can be used wherever the ”supertype” is used

� Usually denoted by A ≤ B

� A is a subtype of B

� A ≤ A, obviously

� Type hierarchy, a tree of types

� Usually object as the root

� A edge from B to A if A < B

Outline

Type Systems for Realistic Languages

Type Checking ChocoPy

Postscript

ChocoPy

� ChocoPy is simpler version of Python3

� Developed as a “toy” language for compiler courses

� Fully-specified

� Syntax (BNF)

� Type System

� Semantics (Operational Semantics)

� We will only look at its Type System

ChocoPy Types

� Basic types: object, int, bool, str

� List type: [T], where T is another type

� e.g. [int]

� T be a list as well, this is an example of a recursive type

� [[int]]

� Special types

� <None>

� <Empty>, indicating an empty list []

ChocoPy Type Hierarchy

� A ≤ A, for all types A

� C ≤ A if C is a subclass of A

� int, bool, str are all subclasses of object

� [T] ≤ object

� but no relationship between two different list types

� <None> ≤ object

� <Empty> ≤ object

ChocoPy Assignment Compatibility

A type T1 is assignment compatible (≤a) to T2 iff values of type

T1 can be used wherever values of T2 are expected.

� T1 ≤ T2 (note: this is subtyping ≤)

� T1 cannot be <None> if T2 is int, bool or str

� T1 can be <Empty> only if T2 is [T]

� T1 can be [<None>] if T2 is [T], where <None> ≤a T

� Note that means T can only be object (*)

Join of types

object

int bool str Animal

Cat Dog

The join t of two types A and B denoted as A t B is defined as:

� B if A ≤a B

� This is commutative, so B t A is also B in this case

� C where C is the least common ancestor of A and B in the
type hierarchy defined by ≤

� So int t str is object

� Note this is the least upper bound or LUB (analogous to GLB

in meet lattices)

Type Environment

� Judgements of the form:

� O,M,C ,R ` ...

� Where the type environment consists of:

� O, “local” environment

� M, method/attribute environment, i.e. for A.x-style code

� Both are maps

� And:

� C , the name of the current class, can be ⊥ if outside class

� R, the return type of the current function, can be ⊥ if outside

function

Function Type Notation in ChocoPy

def contains(items:[int], x:int) -> bool:
i:int = 0
while i < len(items):

if items[i] == x:
return True

i = i + 1
return False

The general type for a function f is O(f) = {T1 ×T2 × ...×Tn →
T0; x1, x2, ..., xn; v1 : T ′

1, v2 : T ′
2, ..., v

′
m : T ′

m}

� T1 × T2 × ...× Tn → T0 is the type of arguments and the
return type

� Here, [int]× int→ bool

� x1, x2, ..., xn are names of the arguments: items, x

� v1 : T ′
1, ..., vm : T ′

m are types of variables/functions declared
inside the function

� Here i : int

Method/Attribute Type Notation in ChocoPy

class Point1D:
x: int = 0

the quotes are used since Point1D is being defined ...
def distance(self: "Point1D", o: "Point1D") -> int:

...

� Attributes are simply M(C , a) = T , where C is the class, a is
the attribute, and T is its type

� So, M(Point1D, x) = int

� And methods M(C ,m) are just like functions in the previous
slide

� So,

M(Point1D, distance) = {Point1D× Point1D→ int; ...}

Type Judgements in ChocoPy

� O,M,C ,R ` e : T

� Expression e has type T in the environment O,M,C ,R

� O,M,C ,R ` b

� b is a well-formed (block) statement in O,M,C ,R

� can also be a single statement, obviously

� If reading the ChocoPy reference, make sure to distinguish the
colon in type judgements e : T from the colon in Python
syntax

� I’ll use : to indicate the latter, and : to indicate the former

Expressions

(bool-true)
O,M,C ,R ` True : bool

(bool-false)
O,M,C ,R ` False : bool

i is an integer literal
(int)

O,M,C ,R ` i : int

s is a string literal
(str)

O,M,C ,R ` s : str

O(id) = T T is not a function type
(var-read)

O,M,C ,R ` id : T

Variable Definitions

O(id) = T O,M,C ,R ` e1 : T1 T1 ≤a T
(var-init)

O,M,C ,R ` id:T = e1

Statements

O,M,C ,R ` s1

O,M,C ,R ` s2
...

O,M,C ,R ` sn
(stmt-def-list)

O,M,C ,R ` s1 NEWLINE s2...sn NEWLINE

Operators

O,M,C ,R ` e1 : int

O,M,C ,R ` e2 : int

op ∈ {+,−, ∗, //,%}
(arith)

O,M,C ,R ` e1 op e2 : int

O,M,C ,R ` e1 : int

O,M,C ,R ` e2 : int

./∈ {<, <=, >, >=, ==, !=}
(compare-int)

O,M,C ,R ` e1 ./ e2 : bool

O,M,C ,R ` e0 : bool

O,M,C ,R ` e1 : T1

O,M,C ,R ` e2 : T2
(if-expr)

O,M,C ,R ` e1 if e0 else e2 : T1 t T2

Return and Class Definitions

O,M,C ,R ` e : T T ≤a R
(return-e)

O,M,C ,R ` return e

O,M,C ,R ` b
(class-def)

O,M,⊥,R ` class C (S):b

Function Definitions

x: str = "hello, world"

def somefn(x: int, y: str):
what is the type of x here?

� Function argument names:

� shadow names outside the function (like x here)

� or are introduced in the definition (like y)

� The notation for shadowing or introducing a variable is:

� O[T/x] which is defined as O[T/x](x) = T and

O[T/x](y) = O(y) where y 6= x

� i.e., O[T/x] is a new map with x mapped to T and the other

mappings unchanged

� repeated applications are possible: O[T1/x][T2/y]

Function Definition - II

Method Definition

Outline

Type Systems for Realistic Languages

Type Checking ChocoPy

Postscript

References

� A self-contained introduction to type systems

� Luca Cardelli, Type Systems, Handbook of Computer Science

and Engineering, 2nd Ed

� An updated version (available only through the library)

� Stephanie Weirich, Type Systems, Handbook of Computer

Science and Engineering, 3rd Ed

� Rohan Padhye, Koushik Sen, Paul Hilfinger, ChocoPy v2.2:

Language manual and reference

� Leandro TC Melo, Rodrigo G Riberio, Breno CF Guimaraes,
Fernando Magno Quintao, Type Inference for C: Applications
to the Static Analysis of Incomplete Programs, ACM
TOPLAS

� The psychec tool

http://lucacardelli.name/Papers/TypeSystems.pdf
https://www-taylorfrancis-com.ezp.lib.rochester.edu/books/computing-handbook-jorge-diaz-herrera-teofilo-gonzalez-allen-tucker/e/10.1201/b16812
https://chocopy.org/chocopy_language_reference.pdf
https://chocopy.org/chocopy_language_reference.pdf
http://homepages.dcc.ufmg.br/~fernando/publications/papers/LeandroTOPLAS20.pdf
http://homepages.dcc.ufmg.br/~fernando/publications/papers/LeandroTOPLAS20.pdf
https://github.com/ltcmelo/psychec

	Type Systems for Realistic Languages
	Type Checking ChocoPy
	Postscript

