CSC2/455 Software Analysis and
Improvement
Type Inference - |l

Sreepathi Pai
March 22, 2022

URCS



Type Systems for Realistic Languages
Type Checking ChocoPy

Postscript



Type Systems for Realistic Languages



Statements and Expressions

e The type system we studied in the last class was for a
functional language
e Programs consist of expressions
e All well-formed expressions have a type
e Some languages, notably imperative languages (Python, C,
etc.), differentiate between statements and expressions
e Expressions have types

e Statements do not have types
e “Procedures” do not have return values



Additional judgements for imperative languages

o [FC

e Cis a well-formed command (or statement) in I

In general, block-structured languages may have C be a block as
well.



Subtyping

e Most languages have a subtype relation

e C has unsigned short is a subtype of unsigned int
e Subtypes can be used wherever the "supertype” is used

e Usually denoted by A < B
e Ais a subtype of B
e A< A, obviously
e Type hierarchy, a tree of types

e Usually object as the root
o A edgefrom Bto Aif A<B



Type Checking ChocoPy



ChocoPy

e ChocoPy is simpler version of Python3

e Developed as a “toy” language for compiler courses
o Fully-specified

e Syntax (BNF)

e Type System

e Semantics (Operational Semantics)

o We will only look at its Type System



ChocoPy Types

e Basic types: object, int, bool, str
e List type: [T], where T is another type
e eg. [int]
e T be a list as well, this is an example of a recursive type
e [[int]]
e Special types
e <None>
e <Empty>, indicating an empty list []



ChocoPy Type Hierarchy

e A <A, for all types A
e C<Aif Cis asubclass of A

e int, bool, str are all subclasses of object
[T] < object

e but no relationship between two different list types

<None> < object

<Empty> < object



ChocoPy Assignment Compatibility

A type T; is assignment compatible (<;) to T, iff values of type
T1 can be used wherever values of T, are expected.

e T; < T, (note: this is subtyping <)
e T7 cannot be <None> if T5 is int, bool or str
e T can be <Empty> only if Ty is [T]

e T7 can be [<None>] if T» is [T], where <None> <, T

e Note that means T can only be object (*)



Join of types

object

NN

int bool str Animal

/N

Cat Dog

The join U of two types A and B denoted as A LI B is defined as:

e BIfA<L,B
e This is commutative, so B L A is also B in this case
e C where C is the least common ancestor of A and B in the
type hierarchy defined by <

e So int LIstr is object
e Note this is the least upper bound or LUB (analogous to GLB
in meet lattices)



Type Environment

e Judgements of the form:
e O,M,C,RI ...
e Where the type environment consists of:

e O, "local" environment

M, method/attribute environment, i.e. for A.x-style code
e Both are maps

e And:

e (C, the name of the current class, can be _L if outside class
e R, the return type of the current function, can be L if outside
function



Function Type Notation in ChocoPy

def contains(items:[int], x:int) -> bool:

i:int = 0
while i < len(items):
if items[i] == x:
return True
i=1i+1

return False

The general type for a function f is O(f) ={T1i x Ta x ... x T, —
Toi X1, X2, ooy Xmiva = T{,va : T v o Th}
o T1 X Tr x...x T, — Ty is the type of arguments and the
return type
e Here, [int] X int — bool
® Xx1,Xp,...,X, are names of the arguments: items, x

e vi: Ty, ..,vy: T} are types of variables/functions declared
inside the function

e Here i: int



Method/Attribute Type Notation in ChocoPy

class Pointi1D:
x: int = 0

# the quotes are used since PointlD is being defined ...
def distance(self: "PointiD", o: "Pointi1D") -> int:

e Attributes are simply M(C,a) = T, where C is the class, a is
the attribute, and T is its type

e So, M(Point1D,x) = int
e And methods M(C, m) are just like functions in the previous
slide
e So,
M(Point1D,distance) = {Point1D X Point1D — int;...}



Type Judgements in ChocoPy

e OMC,Rre: T
e Expression e has type T in the environment O, M, C, R
e OOM,C,RFDb
e b is a well-formed (block) statement in O, M, C, R
e can also be a single statement, obviously
e If reading the ChocoPy reference, make sure to distinguish the
colon in type judgements e : T from the colon in Python
syntax
e |'ll use : to indicate the latter, and : to indicate the former



(BOOL-TRUE)

O,M,C,Rt‘ True : bool

(BOOL-FALSE)
O,M,C,R}\ False : bool

i is an integer literal

O,M,C,RFi:int

(INT)

s is a string literal

O M,C,RF s:str

(STR)

O(id) =T T is not a function type
O,M,C,RFid:T

(VAR-READ)



Variable Definitions

O(id)=T OM,C,RFe:Ti Ti<,T
O,M,C,RFid:T = e

(VAR-INIT)



Statements

O,M,C,RFS;[
O,M,C,R}_SQ

O,M,C,RF s,
O,M,C,Rt sy NEWLINE s,...s, NEWLINE

(STMT-DEF-LIST)



O,M,C,RF e : int

O,M,C,RF e :int

op € {+,—,x//,%}
OM,C,RF e op e :int

(ARITH)

O M,C,RF e :int
O M,C,RF e :int
qu {(7 <=7 >’ >=’ ==, !=}

O M,C,Rt e 16 : bool

(COMPARE-INT)

O,M,C,RF e : bool
O,M,C,Rl—eliTl
O,M,C,Rl—eziTz

(IF-EXPR)
OM,C,RFe if e else e: T1 LTy




Return and Class Definitions

OMCRFe: T T<;R
O,M,C,RF return e

(RETURN-E)

O.M,C,RF b
O,M, L, RI class C(S):b

(CLASS-DEF)



Function Definitions

X: str = "hello, world"

def somefn(x: int, y: str):
# what is the type of x here?

e Function argument names:
e shadow names outside the function (like x here)
e or are introduced in the definition (like y)
e The notation for shadowing or introducing a variable is:
e O[T /x] which is defined as O[T /x](x) = T and
OT/XI(y) = O(y) where y # x
e ie, O[T /x]is a new map with x mapped to T and the other
mappings unchanged
e repeated applications are possible: O[Ty /x]|[T2/y]



Function Definition - |l

Ty, if => is present,

<None>, otherwise.

Of)={Ty x - xTp =Tz, xp; v 2 T4, oo v t T}
n=>0 m >0

O fxq]... [To/x,)[T1 fv1] o [T, fom) . M, C,T b

0, M, C’ R def f(ml PR t-T'n:Tn) [[_> T(]]]? b

T =

[FUNC-DEF]



Method Definition

Ty, if => is present,

<None>, otherwise.

M fy={T1x- xTp—=T; x1,...,20; v1:7T7,..., v : To}
n>1 m >0

C=1

O[Ty faq] .. [Tz [Ty o] - (T8 o) ML, CLT = b
O,M,C,Rtdef f(x1:Th,...,0n:T3) [-> Tu]]? :bh

T =

METHOD-DEF]



Postscript



References

A self-contained introduction to type systems

e Luca Cardelli, Type Systems, Handbook of Computer Science
and Engineering, 2nd Ed
e An updated version (available only through the library)
e Stephanie Weirich, Type Systems, Handbook of Computer
Science and Engineering, 3rd Ed
e Rohan Padhye, Koushik Sen, Paul Hilfinger, ChocoPy v2.2:
Language manual and reference
e Leandro TC Melo, Rodrigo G Riberio, Breno CF Guimaraes,
Fernando Magno Quintao, Type Inference for C: Applications

to the Static Analysis of Incomplete Programs, ACM
TOPLAS

e The psychec tool


http://lucacardelli.name/Papers/TypeSystems.pdf
https://www-taylorfrancis-com.ezp.lib.rochester.edu/books/computing-handbook-jorge-diaz-herrera-teofilo-gonzalez-allen-tucker/e/10.1201/b16812
https://chocopy.org/chocopy_language_reference.pdf
https://chocopy.org/chocopy_language_reference.pdf
http://homepages.dcc.ufmg.br/~fernando/publications/papers/LeandroTOPLAS20.pdf
http://homepages.dcc.ufmg.br/~fernando/publications/papers/LeandroTOPLAS20.pdf
https://github.com/ltcmelo/psychec

	Type Systems for Realistic Languages
	Type Checking ChocoPy
	Postscript

