
CSC2/455 Software Analysis and

Improvement

Dead Code Elimination

Sreepathi Pai

February 15, 2023

URCS



Outline

Review

Dead Code Elimination

The Perils of DCE

Postscript



Outline

Review

Dead Code Elimination

The Perils of DCE

Postscript



So far

� Source code

� Three-address form

� Control-flow graphs

� SSA form

� Data flow analyses



Outline

Review

Dead Code Elimination

The Perils of DCE

Postscript



Definitions

� Dead code

� Useless operation: Not externally visible

� Unreachable code: Cannot be executed

� Critical operation: (Direct) “Useful operation”

� Operation that computes return value

� Operation that stores to memory (i.e. is externally visible)

� Operation that performs I/O

� ...



Two Steps: Step 1

� Find all directly useful operations and mark them

� Find all indirectly useful operations and mark them

� I.e. those that feed into directly useful operations

� Iterate until all operations that ultimately feed into directly

useful operations have been found and marked



Two Steps: Step 2

� Remove all operations that remain unmarked



Example #1

void swap(int *x, int *y) {
int t;

t = *x;
*x = *y;
*y = t;

}



Example #2

int min(int x, int y) {
int r;

if (x > y) {
r = y;

} else {
r = x;

}

return r;
}



Example #2: 3AC

int min(int x, int y) {
int r;
int t;

t = x > y;
if(t == 0) goto L1;

r = y;
goto L2;

L1:
r = x;

L2:
return r;

}



Example #2: With useless operations removed

int min(int x, int y) {
int r;

r = y;
r = x;

return r;
}

� Marking and removing useless operations uses only dataflow

information

� Must also preserve control flow (i.e. control dependences)

� How to identify useful branches?



Aside: Converting Control Dependence to Data Dependence

Allen, Kennedy, Porterfield, Warren, “Conversion of Control

Dependence to Data Dependence”, POPL (1983) *

� Required reading for 455

https://dl.acm.org/doi/10.1145/567067.567085
https://dl.acm.org/doi/10.1145/567067.567085


Handling Control Flow

� Assume all “jumps” (unconditional branches) are useful

� i.e. goto Lx

� What about conditional branches?



Conditional Branches: Example

int first_N_sum(int N) {
int s = 0;

for(int i = 1; i <= N; i++)
s = s + i;

return N * (N + 1) / 2;
}



3AC code for conditional branches

int first_N_sum(int N) {
int s = 0;
int i, t;

i = 1;
L1:

t = i <= N;
if(t == 0) goto L2;

s = s + i;
i++;
goto L1;

L2:
return N * (N + 1) / 2;

}

How do we recognize that the conditional branch is useless in this

case?



GCC 8.2 for x86-64 (-O0)

first_N_sum(int):
push rbp
mov rbp, rsp
mov DWORD PTR [rbp-20], edi
mov DWORD PTR [rbp-4], 0 ; s = 0
mov DWORD PTR [rbp-8], 1 ; i = 1

.L3:
mov eax, DWORD PTR [rbp-8]
cmp eax, DWORD PTR [rbp-20]
jg .L2
; s = s + i
mov eax, DWORD PTR [rbp-8]
add DWORD PTR [rbp-4], eax
add DWORD PTR [rbp-8], 1
jmp .L3

.L2:
mov eax, DWORD PTR [rbp-20]
add eax, 1
imul eax, DWORD PTR [rbp-20]
mov edx, eax
shr edx, 31
add eax, edx
sar eax
pop rbp
ret



GCC 8.2 for x86-64 (-O1)

first_N_sum(int):
test edi, edi
jle .L2
lea edx, [rdi+1]
mov eax, 1 ; i = 1

.L3:
add eax, 1 ; i = i + 1
cmp eax, edx
jne .L3

.L2:
lea eax, [rdi+1]
imul edi, eax
mov eax, edi
shr eax, 31
add eax, edi
sar eax
ret



GCC 8.2 for x86-64 (-O2)

first_N_sum(int):
lea eax, [rdi+1]
imul edi, eax
mov eax, edi
shr eax, 31
add eax, edi
sar eax
ret

All compiler output examples obtained using the Compiler Explorer.

https://www.godbolt.org


Conditional Branches

� A conditional branch is useful only if:

� A useful operation depends on it

� Control dependence

� (informal) an operation O is dependent on a branch B if the

direction of the branch B affects if O is executed

� CFG property



Example of control dependence

t = x > y
if(t == 0) goto L1

r = y;
goto L2;

L1:
r = x;

L2:
return r;

The assignments to r are dependent on if(t == 0), but return

r is not



Control dependence in the CFG

ENTRY

t = x > y

EXIT

r = y r = x

return r



Control Dependence: Formal Definition

� Postdominance

� A node n postdominates m if it occurs on all paths from m to

EXIT

� A node k is control dependent on i if:

� For a path i → j0 → j1 → ... → k , k postdominates all jx
� k does not strictly postdominate i



Control Dependence: Example #1

� Consider k : r = y

� Is it control dependent on i :

t = x > y?

� Only one path i → k

� r = y post-dominates r

= y

� r = y does not strictly

postdominate i

� Because it is not a

post-dominator of i , and

k 6= i

� So k is control-dependent

on i

ENTRY

t = x > y

EXIT

r = y r = x

return r



Control Dependence: Example #2

� Now, consider k: return r

� i is still t = x > y

� Two paths, first path
i → j0 → k

� j0 is r = y

� return r post-dominates

r = y and itself

� return r strictly

postdominates i

� Because it is a

post-dominator of i , and

k 6= i

� So k is not

control-dependent on i

ENTRY

t = x > y

EXIT

r = y r = x

return r



Path #2 of Example #2

� Second path is i → j1 → k

� j1 is r = x

� Similar arguments show that k is not control-dependent on i



Using Reverse Dominance Frontiers (RDF)

� Given that return r is

useful, so are r = x and r

= y

� We can see that t = x > y

is in the reverse dominance
frontier (RDF ) of r = x

and r = y

� RDF is DF on

edge-reversed CFG.

� Indeed, RDFs identify

control dependences

ENTRY

t = x > y

EXIT

r = y r = x

return r



Marking conditional branches useful

� If node k contains useful operations,

� And if k is control-dependent on node i ,

� Then the (conditional) branch in i is useful.

� Operationalized as:

� If block k contains useful operations

� Mark all conditional branches in k ’s reverse dominance frontier

RDF(k) as useful

� RDF computed as DF on edge-reversed CFG



Dead Code Elimination: High-level algorithm

� Mark all directly useful operations

� Repeat until convergence

� Mark all indirectly useful operations

� Mark all conditional branches in RDFs of useful operations as

useful

� Remove all unmarked operations

� Remove empty nodes in CFG / remove all useless control flow

See algorithms in Figure 10.1 and 10.2 in Turczon and Cooper.



Outline

Review

Dead Code Elimination

The Perils of DCE

Postscript



The NULL pointer in Kernel Code

static unsigned int tun_chr_poll(struct file *file, poll_table * wait)
{
struct tun_file *tfile = file->private_data;
struct tun_struct *tun = __tun_get(tfile);
struct sock *sk = tun->sk;
unsigned int mask = 0;

if (!tun)
return POLLERR;

Details here: Jonathan Corbet, Fun with NULL pointers, part 1

https://lwn.net/Articles/342330/


The BIND issue

Beginning with GCC 4.9.0, code optimization in GCC now includes

(by default) an optimization which is intended to eliminate

unnecessary null pointer comparisons in compiled code.

Unfortunately, this optimization removes checks which are

necessary in BIND and the demonstrated effect is to cause

unpredictable assertion failures during execution of named,

resulting in termination of the server process.

Source: https://kb.isc.org/docs/aa-01167

The gory details:

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61236

https://kb.isc.org/docs/aa-01167
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61236


Outline

Review

Dead Code Elimination

The Perils of DCE

Postscript



References

� Chapter 10 of Torczon and Cooper

� Section 10.2


	Review
	Dead Code Elimination
	The Perils of DCE
	Postscript

