
CSC2/455 Software Analysis and

Improvement

Introduction to Hoare Logic

Sreepathi Pai

April 24, 2023

URCS



Outline

Logics

A Logic for Proofs of Programs

Program Verification using Hoare Logic

Postscript



Outline

Logics

A Logic for Proofs of Programs

Program Verification using Hoare Logic

Postscript



Logic

� OED Definition: Reasoning conducted or assessed according

to strict principles of validity.

� Particularly relevant to this lecture:

� A particular system or codification of the principles of proof

and inference.

https://www.lexico.com/definition/logic
https://www.lexico.com/definition/logic


Propositional Logic

� Recall, propositions (identified by symbols)

� The connectives ∨,∧, =⇒ , ⇐⇒ and the operation ¬
� Tautologies

� A formula that is always true

� Contradiction

� A formula that is always false

� Equivalence: two formulae A and B are equivalent if

A ⇐⇒ B is a tautology

� “Proof” technique in propositional logic

� Enumerate all possible values of variables and check if the final

result is always true



Equivalences

� p =⇒ q is equivalent to ¬q =⇒ ¬p
� contrapositive (theorem)

� p =⇒ q is not necessarily equivalent to q =⇒ p

� converse



Valid Arguments

P1

P2

. . .

Pn

Pn+1

� An argument is valid if and only if
P1 ∧ P2 ∧ · · · ∧ Pn =⇒ Pn+1 is a tautology

� this means that P1 ∧ P2 ∧ · · · ∧ Pn ∧ Pn+1 is true



Rules of Inference: Modus Ponens

p

p =⇒ q

q

� (p ∧ (p =⇒ q)) =⇒ q is a tautology

� Example:

� p is “it is raining”

� p =⇒ q is “if it is raining, roads are wet”

� q, so “roads are wet”



Rules of Inference: Modus Tollens

p =⇒ q

¬q

¬p

� ((p =⇒ q) ∧ (¬q)) =⇒ ¬p is a tautology

� Example:

� p =⇒ q is “if a is even, a + 1 is odd”

� ¬q is “a + 1 is not odd”

� ¬p, so “a is not even”



Invalid Rule of Inference: Affirming the Consequent

p =⇒ q

q

p

� ((p =⇒ q) ∧ q) =⇒ p is not a tautology



Proof System for Propositional Logic

� System L

� Lines of proof in this system must be

� an axiom of L (an axiom of L is a tautology)

� an application of Modus Ponens

� a hypothesis (a hypothesis Gn is assumed to be true)

� a lemma (a previously proven theorem)

� The last line of a proof is a theorem

� G1,G2, ...,Gn `L A

� This proof system is both:

� Sound: Only tautologies can be proved

� Complete: All tautologies can be proved

From Hirst and Hirst, A Primer for Logic and Proof.



Outline

Logics

A Logic for Proofs of Programs

Program Verification using Hoare Logic

Postscript



Floyd-Hoare Logic

Developed by Robert Floyd and Tony Hoare in the 1960s.

{P}C{Q}

� P is a precondition

� C is a statement, function or program

� Q is a postcondition

� Both P and Q are logical statements, e.g., what you would

put in an assert

Read as: If P holds, and C executes (and terminates), then Q

holds. P and Q are assertions, usually over program state, and

usually we need to prove that Q holds.



Recall: Partial and Total Correctness

� If C does not terminate, Q may or may not be true

� This is the notion of partial correctness

� If C can be shown (formally) to terminate, then we achieve a

proof of total correctness

Total correctness = Termination + Partial Correctness



Some examples of assertions

� {X = 1} Y := X {Y = 1}
� {X = 1} Y := X {Y = 2}
� {true}C{Q}
� {P}C{true}
� {P}C{false}

Note: not all of the above are valid, they are just assertions to be

checked.



Formal Proof

� (informally) Proofs at the level of rigour that even a computer

could understand!

� Usually, each step in the proof is explicitly annotated as to
how it was obtained from the previous steps

� Makes it easy to check (esp. for computers)

� Either the use of an axiom or a rule of inference

� Painful to construct by hand

� Interactive proof assistants like Coq and Isabelle usually make

it more fun

� (if you’ve disliked writing proofs, try them!)

https://coq.inria.fr/
https://isabelle.in.tum.de/


The assignment axiom of Hoare Logic

� The assignment axiom states that

� `{P[E/V ]} V := E {P}
� P[E/V ] is read as P with all instances of V replaced by E

� P with E for V

� {X = 1}[Y /X ] leads to {Y = 1}
� Usage example: if X = 6, prove Y > 15 after Y := X * 3

� Postcondition P to prove: {Y > 15}
� Use assignment axiom: {X × 3 > 15} Y := X * 3 {Y > 15}
� Given that X = 6, so X × 3 = 6× 3 = 18

� X ∗ 3 = 18 =⇒ X ∗ 3 > 15



Two incorrect assignment axiom forms

� {P} V := E {P[E/V ]}
� {P} V := E {P[V /E ]}



Precondition strengthening

If `{P ′} C {Q} and P =⇒ P ′, then we can write `{P} C {Q}

� {X + 1 = n + 1} X := X + 1 {X = n + 1} (assignment

axiom)

� ` X = n =⇒ X + 1 = n + 1 (from arithmetic)

� {X = n} X := X + 1 {X = n + 1} (precondition

strengthening)



Postcondition weakening

If `{P} C {Q ′}, and Q ′ =⇒ Q, then we can write `{P} C {Q}

� {R = X ∧ 0 = 0} Q := 0 {R = X ∧ Q = 0} (assignment

axiom)

� R = X ∧ Q = 0 =⇒ R = X + (Y × Q)

� {R = X} Q := 0 {R = X + (Y × Q)} (postcondition

weakening)



Conjunctions and Disjunctions

� If `{P1} C {Q1} and `{P2} C {Q2}, then

`{P1 ∧ P2} C {Q1 ∧ Q2}
� If `{P1} C {Q1} and `{P2} C {Q2}, then

`{P1 ∨ P2} C {Q1 ∨ Q2}



Sequencing Rule

� If `{P} C1 {Q} and `{Q} C2 {R}, then `{P} C1; C2 {R}

� You can combine the sequencing rule and the rules of

consequence (i.e. precondition strengthening and

postcondition weakening) to extend this to multiple

statements.



The Conditional Rule

� If `{P ∧ S} C1 {Q} and `{P ∧ ¬S} C2 {Q}, then

� `{P} IF S THEN C1 ELSE C2 {Q}



The While Rule

� If {P ∧ S} C {P} then

� `{P} WHILE S DO C ENDDO {P ∧ ¬S}
� Here, P is the inductive loop invariant, recall:

� It is true on entry into and exit out of the loop

� It is true after every iteration of the loop



More rules

� FOR-rule

� Handling arrays

� variant of assignment, due to McCarthy



Outline

Logics

A Logic for Proofs of Programs

Program Verification using Hoare Logic

Postscript



Example 1

X = x ∧ Y = y

R := X;
X := Y;
Y := R;

X = y ∧ Y = x



Generating Verification Conditions

� A verification condition is a mechanically generated proof goal

from the program and program specifications.

� For example, suppose {P} V := E {Q} exists in the program

� P is programmer-supplied precondition (or annotation)

� Q is programmer-supplied postcondition

� The verification condition for this statement is

P =⇒ Q[E/V ]



Why the VC for assignment works

� From Hoare Logic, we have:

� `{Q[E/V ]} V := E {Q}
� If we prove P =⇒ Q[E/V ], then by precondition

strengthening, we have:

� `{P} V:= E {Q}

� Which is what we had to prove.

What if we can’t prove P =⇒ Q[E/V ]? Does that mean

{P}C{Q} does not hold?



Sufficiency and Incompleteness

� VCs are sufficient, but not necessary

� There may be other ways to prove {P}C{Q}
� Mechanical provers cannot prove everything

� Gödel’s Incompleteness Theorem



Verification conditions for our example

{X = x ∧ Y = y} R := X;

X := Y;

Y := R; {X = y ∧ Y = x}

� The verification conditions for a sequence ending in an
assignment {P} C1; V := E {Q} are those generated by:

� {P} C1 {Q[E/V ]}



Verification conditions for our example: 2

{X = x ∧ Y = y} R := X;

X := Y; {X = y ∧ R = x}

� Because {X = y ∧ Y = x}[R/Y ], following from VC for

sequences ending in an assignment.



Verification conditions for our example: 3

{X = x ∧ Y = y} R := X; {Y = y ∧ R = x}

� P = {X = x ∧ Y = y}
� Q = {Y = y ∧ R = x}
� Using VC for assignment:

� Q[E/V ] = {Y = y ∧ R = x}[X/R] = {Y = y ∧ X = x}

� Here, P =⇒ Q[E/V ] trivially (identical)



Example 2

k >= 0

x := k;
c := 0;

while(x > 0) {
x := x - 1;
c := c + 1;

}

x = 0 ∧ c = k



Verification conditions for While and Sequences

� The verification conditions for a While statement {P} WHILE
S DO C {Q} are

� P =⇒ R (where R is the loop invariant)

� R ∧ ¬S =⇒ Q

� recursively, all VCs from {R ∧ S} C {R}
� The verification conditions for a sequence not ending in an

assignment {P} C1; C2; C(n-1); Cn {Q}, assuming
{R} C(n) {Q} are those generated by:

� {R} Cn {Q}
� {P} C1; C2; C(n-1) {R}



Verification Conditions for While loop and body

while(x > 0) {
x := x - 1;
c := c + 1;

}
/* Q: x = 0 /\ c = k */

� loop invariant: x + c = k

� (VC1) x + c = k ∧ ¬(x > 0) =⇒ x = 0 ∧ c = k

� (from R ∧ ¬S =⇒ Q)

� (VC2) P =⇒ x + c = k (from P =⇒ R)

� (VC3) x + c = k ∧ x > 0 =⇒ x − 1 + c + 1 = k (VC from
assignment)

� Recursively from body:

� {x + c = k ∧ x > 0} x := x - 1; c := c + 1 {x + c = k}
� {x + c = k ∧ x > 0} x := x - 1 {x + c + 1 = k} (from

sequence ending with assignment)



Verification Conditions for Initialization

/* k >= 0 */
x := k;
c := 0;
/* P */

� Let’s assume P = R, so P is x + c = k

� (VC0) k >= 0 =⇒ k = k

� {k >= 0} x := k; c := 0 {x + c = k}
� {k >= 0} x := k; {x + 0 = k} (from sequence ending with

assignment)

� Q[E/V ] is k + 0 = k



Verification Conditions

� (VC0) k >= 0 =⇒ k = k

� (VC1) x + c = k ∧ ¬(x > 0) =⇒ x = 0 ∧ c = k

� (VC2) x + c = k =⇒ x + c = k

� (VC3) x + c = k ∧ x > 0 =⇒ x + c = k

� We need to show that VC0 ∧ VC1 ∧ VC2 ∧ VC3 is valid.



Negate and UNSAT

� Implication P =⇒ Q can be read as, assume P is true, show
that Q is valid.

� P ` Q

� For proving with SAT solvers, if P =⇒ Q, check whether
P ∧ ¬Q is unsatisfiable

� P =⇒ Q can also be written as ¬P ∨ Q



SMT to the rescue (1)

from z3 import *

s = Solver()
x, k, c = Ints(’x k c’)

vc0 = Not(Implies(k >= 0, k == k))
vc1 = Not(Implies(And(x + c == k, Not(x > 0)), And(x == 0, c == k)))
vc2 = Not(Implies(x + c == k, x + c == k))
vc3 = Not(Implies(And(x + c == k, x > 0), x + c == k))

s.add(And(And(And(vc0, vc1), vc2), vc3))

if s.check() == sat:
print("SAT", s.model())

else:
print("UNSAT")



SMT to the rescue (2)

from z3 import *

s = Solver()
x, k, c = Ints(’x k c’)

vc0 = And(k >= 0, Not(k == k))
vc1 = And(And(x + c == k, Not(x > 0)), Not(And(x == 0, c == k)))
vc2 = And(x + c == k, Not(x + c == k))
vc3 = And(And(x + c == k, x > 0), Not(x + c == k))

s.add(And(vc0, And(vc1, And(vc2, vc3))))

if s.check() == sat:
print("SAT", s.model())

else:
print("UNSAT")

Note: No Implies in above code.



Program Verification Procedure

� Generate specifications (aka annotations or assert statements)

� Generate verification conditions

� Usually mechanical, e.g. Dafny or CBMC

� Prove verification conditions

� By hand or

� Automated Theorem Prover



More stuff

� Generating VCs for other statements in language

� Soundness?

� Completeness?

� Decidability?

� Pointers: Separation logic



Outline

Logics

A Logic for Proofs of Programs

Program Verification using Hoare Logic

Postscript



Sources, further reading and links

� Background Reading on Hoare Logic, by Mike Gordon

� The reference for this lecture

� Textbooks

� Software Foundations: Vol 1: Logical Foundations,

� Software Foundations: Vol 2: Programming Language

Foundations

� Concrete Semantics

https://www.cl.cam.ac.uk/archive/mjcg/HL/Notes/Notes.pdf
https://softwarefoundations.cis.upenn.edu/lf-current/index.html
https://softwarefoundations.cis.upenn.edu/current/plf-current/index.html
https://softwarefoundations.cis.upenn.edu/current/plf-current/index.html
http://www21.in.tum.de/~nipkow/Concrete-Semantics/

	Logics
	A Logic for Proofs of Programs
	Program Verification using Hoare Logic
	Postscript

