CSC2/455 Software Analysis and Improvement

 Abstract Interpretation - IIISreepathi Pai
April 3, 2023
URCS

Outline

Recap

Value Abstractions

Computable Abstract Semantics

Postscript

Outline

Recap

Value Abstractions

Computable Abstract Semantics

Postscript

Previous lecture

- Previous lecture
- Concrete Semantics for a Small Language
- Today:
- Value abstractions
- Non-relational Abstractions
- Abstract Semantics
- Soundness, termination, etc.

Outline

Recap

Value Abstractions

Computable Abstract Semantics

Postscript

Abstraction Examples

- Consider the concrete memory state M :
- $\{\{\mathrm{x} \mapsto 7, \mathrm{y} \mapsto 2\},\{\mathrm{x} \mapsto 8, \mathrm{y} \mapsto 0\}\}$
- How shall we abstract it?
- $x=\{7,8\}$
- Signs: $x=[\geq 0]$
- Intervals: $x=[7,8]$
- $y=\{0,2\}$
- Signs: $y=[\geq 0]$
- Intervals: $y=[0,2]$ (note: $[0,2]=\{0,1,2\})$
- Alternatively:
- Signs: $x=\top$ (here, $T=\mathbb{V}=\mathbb{Z}$)
- Intervals: $y=[0,3]$
- Multiple abstractions are possible, but some are less precise

Lattice for Signs Domain

- Signs, $\mathbb{A}_{g}=\{T,[\leq 0],[\geq$

$$
0],[=0], \perp\}
$$

- $T=\mathbb{V}$ (recall $\mathbb{V}=\mathbb{Z}$ for our language)
- [$\leq 0]=\{x \mid x \leq 0\}$
- $[\geq 0]=\{x \mid x \geq 0\}$
- $[=0]=\{0\}$
- $\perp=\emptyset$
- Order relation \sqsubseteq
- Items lower in the lattice are more precise
- $a \sqsubseteq b$, read as a less than

b
- Join \sqcup
- Least upper bound, lub

Lattice for Intervals Domain

- Intervals, $\mathbb{A}_{\mathscr{I}}=$

$$
\{\top, \perp\} \cup\{[n, m] \mid n, m \in \mathbb{Z}\}
$$

- $\mathrm{T}=(-\infty,+\infty)=\mathbb{V}=\mathbb{Z}$
- $[n, m]=\{x \mid n \leq x \leq m\}$
- $[n,+\infty)=\{x \mid n \leq x\}$
- $(-\infty, m)=\{x \mid x \leq m\}$
- $\perp=\emptyset$

- Infinite lattice
- Order relation \sqsubseteq and Join \sqcup supported

Abstraction and Concretization Functions (Informal)

- Given an element c of the concrete domain \mathbb{C}, we want $a \in \mathbb{A}$
- c is a set of values
- e.g. $x=\{7,8\}$
- Let the value abstraction function be $\phi_{\mathbb{V}}$
- $\phi_{\boldsymbol{v}}: \mathbb{C} \rightarrow \mathbb{A}$
- Similarly, given an abstract element $a \in \mathbb{A}$, we want the concrete element c corresponding to it
- e.g., $a=[<=0] \in \mathbb{A}_{\mathscr{C}}$
- So, corresponding $c=\{\ldots,-3,-2,-1,0\}$
- Let this value concretization function be γ_{γ}
- $\gamma_{v}: \mathbb{A} \rightarrow \mathbb{C}$
- Key questions: how do we relate ϕ_{y} to γ_{y}
- soundly,
- precisely?

Code for Signs

```
class SignsDomain(object):
    LTZ = "[<= 0]"
    GTZ = "[>= 0]"
    EQZ = "[= 0]"
    TOP = "TOP"
    BOT = "BOT"
    finite_height = True
    def phi(self, v: int):
        if \(v==0\) :
        return self.EQZ
        elif \(v>0\) :
            return self.GTZ
        elif v < 0:
            return self.LTZ
        else:
            raise ValueError(f"Unknown value for signs abstraction \{v\}")
```

```
class SignsDomain(object):
# it helps to think of abstract elements as sets, with lte
# denoting set inclusion. So we're asking, is x included in y?
def lte(self, x, y):
    # bot is always less than everything else
    # empty set {} is always included
    if }x== self.BOT: return True
    # top is only lte
    # top is all possible values, so it is only included in itself
    if x == self.TOP:
        if y != self.TOP: return False
        return True
        # eqz is the set {0}, which is included in all sets (>=0, <=0) exc
        if x == self.EQZ:
            if y == self.BOT: return False
            return True
        if }x== self.LTZ or x == self.GTZ
            if y == x: return True
            if y == self.TOP: return True
            # these sets are not included in {0} or {} or {>=0} [resp. {<=
            return False
```


\sqcup in code

```
class SignsDomain(object):
    def lub(self, x, y):
        if self.lte(x, y): return y # y includes x
        if self.lte(y, x): return x # x includes y
    # if incomparable, then we return T
    return self.TOP
```


Concrete Domains

- Values in our concrete domain belong to $\wp(\mathbb{M})$
- Recall $\mathbb{M}=\mathbb{X} \rightarrow \mathbb{V}$
- A concrete domain is the pair (\mathbb{C}, \subseteq)
- $\mathbb{C}=\wp(\mathbb{M})$
- If $x, y \in \mathbb{C}$, and $x \subseteq y$, then x implies y
- x and y are behavioural properties expressed as sets
- x is at least as "strong" as y
- Example:
- x is set of all states where $x>10$
- y is set of all states where x is non-negative
- Clearly $x \subseteq y$

Abstraction

- An abstract domain is $(\mathbb{A}, \sqsubseteq)$
- \sqsubseteq orders members of \mathbb{A}
- An abstraction relation $(\models) \subseteq \mathbb{C} \times \mathbb{A}$, such that:
- for all $c \in \mathbb{C}$, $a_{0}, a_{1} \in \mathbb{A}$, if $c \models a_{0}$, and $a_{0} \sqsubseteq a_{1}$, then $c \models a_{1}$
- example: $c=\{0\}, a_{0}=[=0], a_{1}=[\geq 0]$ in the signs domain
- for all $c_{0}, c_{1} \in \mathbb{C}, a \in \mathbb{A}$, if $c_{0} \subseteq c_{1}$ and $c_{1} \models a$, then $c_{0} \models a$
- example: $c_{0}=\{3,5\}, c_{1}=\{2,3,4,5,6\}, a=[2,6]$
- The goal of abstraction is to map $c \in \mathbb{C}$ to the most precise $a \in \mathbb{A}$

Concretization Function

- $\gamma_{\sqrt{ }}: \mathbb{A} \rightarrow \mathbb{C}$, the concretization function is defined as:
- $\gamma_{\mathcal{V}}(a) \mid=a$,
- $\gamma_{\mathcal{V}}(a)$ is the maximum concrete element of \mathbb{C} that satisfies a
- I.e., if $\gamma_{v}(a)=c$, there no other c^{\prime} such that $c^{\prime} \models a$ and $c \subseteq c^{\prime}$
- Examples:
- $\gamma_{\mathscr{S}}([\leq 0])=\{x \mid x \leq 0\}$
- $\gamma_{\mathscr{F}}([0,3])=\{0,1,2,3\}$
- $\gamma(\perp)=\emptyset$
- Concretization can be used instead of \models to define the abstraction relation:
- $\forall c \in \mathbb{C}, a \in \mathbb{A} \quad c \models a \Longleftrightarrow c \subseteq \gamma_{\mathcal{V}}(a)$
- e.g.: using signs, $c=\{3\}, a=[\geq 0], \gamma_{\mathscr{V}}(a)=\{0,1,2,3,4, \ldots\}$

(Best) Abstraction Function

- $\alpha: \mathbb{C} \rightarrow \mathbb{A}$, the abstraction function is defined as:
- $c \vDash \alpha(c)$
- $\alpha(c)$ is the minimum element of \mathbb{A} that is satisfied by c
- i.e., if $\alpha(c)=a$, there is no other a^{\prime} such that $c \models a^{\prime}$ and $a^{\prime} \sqsubseteq a$
- Examples:
- $\alpha_{\mathscr{S}}(\{0\})=[=0]$
- $\alpha_{\mathscr{I}}(\{0,3\})=[0,3]$
- α may not exist

When α may not exist

- When $[=0]$ is removed from signs, it has no best abstraction function
- $\{0\}$ can be described by either $[\leq 0]$ or $[\geq 0]$
- $[\leq 0] \nsubseteq[\geq 0]$ and $[\geq 0] \nsubseteq[\leq 0]$
- Convex polyhedra
- No finite set of linear inequalities can approximate a circle (in the 2-D domain) or its equivalents in higher domains
- Each linear equality is a tangent to the circle

Galois Connections

- When $\alpha_{\mathscr{V}}$ exists:

$$
\forall c \in \mathbb{C}, a \in \mathbb{A}, \quad \alpha_{\mathcal{V}}(c) \sqsubseteq a \Longleftrightarrow c \subseteq \gamma_{\mathcal{V}}(a)
$$

- The pair γ_{V} and α_{V} form a Galois connection with the following properties:
- γ_{V} and α_{y} are monotone
- $\forall c \in \mathbb{C}, c \subseteq \gamma_{\mathscr{V}}(\alpha(c))$
- $\forall a \in \mathbb{A}, \alpha_{\mathscr{V}}\left(\gamma_{\mathcal{V}}(a)\right) \sqsubseteq a$

Non-relational Abstraction \#1

- A non-relational abstraction does not capture relationships between variables
- Each variable is abstracted independently
- We can extend the value abstraction functions we've defined so far to define a non-relational abstraction:
- M^{\sharp} is the abstraction of M
- $M \subseteq \gamma_{\mathcal{N}}\left(M^{\sharp}\right)$
- The concretization function is defined as:
- $\gamma_{\mathcal{N}}: M^{\sharp} \mapsto\left\{m \in \mathbb{M} \mid \forall \mathrm{x} \in \mathbb{X}, m(\mathrm{x}) \in \gamma_{\mathscr{V}}\left(M^{\sharp}(\mathrm{x})\right)\right\}$
- The order relation $\sqsubseteq_{\mathscr{V}}$ is pointwise-extended:
- $M_{0}^{\sharp} \sqsubseteq^{\sharp} M_{1}^{\sharp}$ if and only if $\forall \mathrm{x} \in \mathbb{X}, M_{0}^{\sharp}(\mathrm{x}) \sqsubseteq_{\mathscr{v}} M_{1}^{\sharp}(\mathrm{x})$

Non-relational Abstraction \#2

- The bottom $\perp_{\mathcal{N}}$ is defined as:
- $\forall \mathrm{x} \in \mathbb{X}, \perp_{\mathcal{N}}(\mathrm{x})=\perp_{\mathcal{V}}$
- The abstraction function, if it exists, is defined as:
- $\alpha_{\mathcal{N}}: M \mapsto(\mathrm{x} \in \mathbb{X}) \mapsto \alpha_{\mathcal{Y}}(\{m(x) \mid m \in M\})$

Code Implementation for a Non-relational Abstraction

```
class NonRelationalAbstraction(object):
    def __init__(self, domain):
        self.dom = domain
    def phi(self, M):
        m_accum = {}
        for m in M:
            m_abs = {}
            for x in m:
            m_abs[x] = self.dom.phi(m[x])
            if len(m_accum) == 0:
            m_accum = m_abs
            else:
            m_accum = self.union(m_accum, m_abs)
    # also construct BOT
    self.BOT = {}
    for x in m_accum:
            self.BOT[x] = self.dom.BOT
    return m_accum
def lte(self, MO_abs, M1_abs):
        for x in MO_abs:
            if not self.dom.lte(MO_abs[x], M1_abs[x]): return False
        return True
```


Outline

Recap
 Value Abstractions

Computable Abstract Semantics

Postscript

Goal: Sound Static Analysis

Goal: Sound Static Analysis

Abstraction of empty set

Recall:

$$
\llbracket C \rrbracket(\emptyset)=\emptyset
$$

so we will define:

$$
\llbracket C \rrbracket_{\mathscr{P}}^{\sharp}(\perp)=\perp
$$

In code:
def evaluate_Cmd_abs(C: Cmd, M_abs: AbstractMemory, abstraction) -> Abstra
if M_abs == abstraction.BOT:
return M_abs
...

Skip

$$
\llbracket \operatorname{skip} \rrbracket_{\mathfrak{P}}^{\sharp}\left(M^{\sharp}\right)=M^{\sharp}
$$

In code:
def evaluate_Cmd_abs(C: Cmd, M_abs: AbstractMemory, abstraction) -> Abstra
\# the value abstraction
v_abs = abstraction.dom
if isinstance(C, Skip):
return M_abs
elif isinstance(C, Program): return evaluate_Cmd_abs(C.program, M_abs, abstraction)

Composition

$$
\llbracket C_{0} ; C_{1} \rrbracket_{\mathfrak{P}}^{\sharp}\left(M^{\sharp}\right)=\llbracket C_{1} \rrbracket_{\mathcal{P}}^{\sharp}\left(\llbracket C_{0} \rrbracket_{\mathscr{P}}^{\sharp}\left(M^{\sharp}\right)\right)
$$

- This seems to be intuitive, but we need to show that:
- The concrete postcondition of $\llbracket C_{0} ; C_{1} \rrbracket_{\mathscr{P}}$ is over-approximated by $\llbracket C_{0} ; C_{1} \rrbracket_{\mathscr{P}}^{\sharp}$
- l.e. $\llbracket C_{0} ; C_{1} \rrbracket_{\mathscr{P}} \subseteq \gamma\left(\llbracket C_{0} ; C_{1} \rrbracket_{\mathscr{P}}^{\sharp}\right)$

Theorem: Approximation of Compositions: Let
$F_{0}, F_{1}: \wp(\mathbb{M}) \rightarrow \wp(\mathbb{M})$ be two monotone functions that are overapproximated by $F_{0}^{\sharp}, F_{1}^{\sharp}: \mathbb{A} \rightarrow \mathbb{A}$, i.e. $F_{0} \circ \gamma \subseteq \gamma \circ F_{0}^{\sharp}$ and $F_{1} \circ \gamma \subseteq \gamma \circ F_{1}^{\sharp}$. Then, $F_{0} \circ F_{1}$ can be approximated by $F_{0}^{\sharp} \circ F_{1}^{\sharp}$

Composition in Code

```
def evaluate_Cmd_abs(C: Cmd, M_abs: AbstractMemory, abstraction) -> Abstra
    elif isinstance(C, Seq):
        return evaluate_Cmd_abs(C.cmd1,
                        evaluate_Cmd_abs(C.cmd0, M_abs,
                        abstraction),
    abstraction)
```


Expressions

$$
\begin{gathered}
\llbracket E \rrbracket^{\sharp}: \mathbb{A} \rightarrow \mathbb{A}_{\mathscr{V}} \\
\llbracket n \rrbracket^{\sharp}\left(M^{\sharp}\right)=\phi \mathscr{V}(n) \\
\llbracket x \rrbracket^{\sharp}\left(M^{\sharp}\right)=M^{\sharp}(\mathrm{x}) \\
\llbracket E_{0} \odot E_{1} \rrbracket^{\sharp}\left(M^{\sharp}\right)=f_{\odot}^{\sharp}\left(\llbracket E_{0} \rrbracket^{\sharp}\left(M^{\sharp}\right), \llbracket E_{1} \rrbracket^{\sharp}\left(M^{\sharp}\right)\right)
\end{gathered}
$$

- ϕ_{y} can be replaced by $\alpha_{\mathcal{V}}$ if it exists
- Otherwise just return an abstract element such that $\{n\} \subseteq \gamma\left(\phi_{\mathscr{V}}(n)\right)$

Expressions: f_{\odot}^{\sharp}

$\forall n_{0}^{\sharp}, n_{1}^{\sharp} \in \mathbb{A}_{\mathcal{V}},\left\{f_{\odot}\left(n_{0}, n_{1}\right) \mid n_{0} \in \gamma_{V}\left(n_{0}^{\sharp}\right)\right.$ and $\left.n_{1} \in \gamma_{V}\left(n_{1}^{\sharp}\right)\right\} \subseteq \gamma_{V}\left(f_{\odot}^{\sharp}\left(n_{0}^{\sharp}, n_{1}^{\sharp}\right)\right.$,

- The result of applying $f_{\odot}^{\sharp}\left(n_{0}^{\sharp}, n_{1}^{\sharp}\right)$, when concretized
- $\gamma_{V}\left(f_{\odot}^{\sharp}\left(n_{0}^{\sharp}, n_{1}^{\sharp}\right)\right)$
- must include the concrete set formed when we apply f_{\odot} to ...
- ... the elements of the individual concretizations of $n_{0}^{\sharp}, n_{1}^{\sharp}$
- $n_{0} \in \gamma_{V}\left(n_{0}^{\sharp}\right)$
- $n_{1} \in \gamma_{\mathscr{V}}\left(n_{1}^{\sharp}\right)$

Examples (using signs):

- $f_{+}^{\sharp}([\geq 0],[\geq 0])=[\geq 0]$
- $f_{+}^{\sharp}([\geq 0],[\leq 0])=\top$

Expressions: f_{\odot}^{\sharp} in code (Signs)

```
def f_binop(self, op, left, right):
    if op == '+':
        return self.lub(left, right)
    elif op == '*':
        if left != right:
            return self.lub(left, right)
        elif left == self.LTZ:
            return self.GTZ # - * - = +
        elif left == self.GTZ:
            return self.GTZ # + * + = +
    elif op == '-':
        if left == right:
            if left != self.EQZ and left != self.BOT:
                return self.TOP
            return left # {0} - {0} => {0}, {} - {} => {}
        else:
            return left # {+ve} - {-ve} => {+ve}, {-ve} - {+ve} => {-ve}
    else:
        raise NotImplementedError(f'Operator {op}')
```

- f_{\odot}^{\sharp} is per abstract domain (not per language as in the concrete semantics)

Expressions: f_{\odot}^{\sharp} in code (Intervals)

See f_binop in dom_intervals.py.

- The tricky aspects revolve around handling $-\infty$ and $+\infty$

Evaluating Expressions Abstractly in Code

```
def evaluate_Expr_abs(E: Expr, m: AbstractMemory, vabs):
    if isinstance(E, Scalar):
        return vabs.phi(E)
    elif isinstance(E, Var):
        return m[E.name]
    elif isinstance(E, BinOp):
        return vabs.f_binop(E.op,
        evaluate_Expr_abs(E.left, m, vabs),
        evaluate_Expr_abs(E.right, m, vabs))
```


Assignments and input

The concrete semantics are:

$$
\llbracket \mathrm{x}:=E \rrbracket_{\mathscr{P}}(M)=\{m[\mathrm{x} \mapsto \llbracket E \rrbracket(m)] \mid m \in M\}
$$

The abstract semantics are:

$$
\llbracket \mathrm{x}:=E \rrbracket_{\mathscr{P}}^{\sharp}\left(M^{\sharp}\right)=M^{\sharp}\left[\mathrm{x} \mapsto \llbracket E \rrbracket^{\sharp}\left(M^{\sharp}\right)\right]
$$

Similarly, since input also writes to a variable:

$$
\llbracket \operatorname{input}(\mathrm{x}) \rrbracket_{\mathscr{P}}^{\sharp}\left(M^{\sharp}\right)=M^{\sharp}\left[\mathrm{x} \mapsto \top_{\mathscr{V}}\right]
$$

Recall that input can return any value from the user.

Assignments and input Code

```
def evaluate_Cmd_abs(C: Cmd, M_abs: AbstractMemory, abstraction) -> Abstra
    def update_abs_memories(var, value_lambda):
        out = dict(M_abs)
        out[var] = value_lambda(M_abs)
        return out
    elif isinstance(C, Assign):
        return update_abs_memories(C.left.name,
                            lambda m: evaluate_Expr_abs(C.right,
                                    m, v_abs))
    elif isinstance(C, Input):
        return update_abs_memories(C.var.name, lambda _: v_abs.TOP)
```


Conditionals: Example

$$
\begin{aligned}
& \text { \# M\# = \{x: T, y: T\} } \\
& \text { x := } 7 \\
& \text { \# M\# = \{x: [7, 7], y: T\} } \\
& \text { if (} \mathrm{x}>5 \text {) } \\
& \text { \# M\# = \{x: [6, +inf), } y: T\} \\
& \mathrm{y}=1 \\
& \text { \# M\# = \{x: [6, +inf), y: [1, 1]\} } \\
& \text { else } \\
& \text { \# M\# = \{x: (-inf, 5], y: T\} } \\
& y=10 \\
& \text { \# M\# = \{x: (-inf, 5], y: [10, 10]\} } \\
& \text { \# M\# = \{x: [-inf, +inf], y: [1, 10]\} }
\end{aligned}
$$

- We need a abstract filtering function $\mathscr{F}_{B}^{\#}$
- Its effects are shown
- We need to join the abstract elements:
- Use the lub (least upper bound), here $\sqcup^{\#}$
- But we have lost precision for x !

$$
\begin{aligned}
& \text { \# M\# = \{x: T, y: T\} } \\
& \mathrm{x}:=7 \\
& \text { \# M\# = \{x: [7, 7], y: T\} } \\
& \text { if (} \mathrm{x}>5 \text {) } \\
& \text { \# M\# = \{x: [7, 7], y: T\} } \\
& \mathrm{y}=1 \\
& \text { \# M\# = }\{\mathrm{x}:[7,7], \mathrm{y}:[1,1]\} \\
& \text { else } \\
& \text { \# M\# = \{x: BOT, y: BOT\} } \\
& \mathrm{y}=10 \\
& \text { \# M\# = \{x: BOT, y: BOT\} } \\
& \text { \# M\# }=\{x:[7,7], y:[1,1]\}
\end{aligned}
$$

- For the true part, $[6,+\infty)$ is refined to $[7,7]$
- For the false part, $(-\infty, 5]$ does not include [7, 7]
- So the abstract state M^{\sharp} is refined to \perp, by setting all variables to \perp
- Recall that $\llbracket C \rrbracket_{\mathscr{P}}^{\sharp}(\perp)=\perp$ and that $a \sqcup^{\sharp} \perp=a$

Soundness properties

For $\mathscr{F}_{B}^{\#}$: For all B and abstract states M^{\sharp}

$$
\mathscr{F}_{B}\left(\gamma\left(M^{\sharp}\right)\right) \subseteq \gamma\left(\mathscr{F}_{B}^{\sharp}\left(M^{\sharp}\right)\right)
$$

For $\sqcup^{\sharp} \operatorname{over} M_{0}^{\sharp}$ and M_{1}^{\sharp} :

$$
\gamma\left(M_{0}^{\sharp}\right) \cup \gamma\left(M_{1}^{\sharp}\right) \subseteq \gamma\left(M_{0}^{\sharp} \sqcup^{\sharp} M_{1}^{\sharp}\right)
$$

Abstract Semantics of If

$$
\llbracket i f(B)\left\{C_{0}\right\} \text { else }\left\{C_{1}\right\} \rrbracket_{\mathscr{P}}^{\sharp}\left(M^{\sharp}\right)=\llbracket C_{0} \rrbracket_{\mathfrak{P}}^{\sharp}\left(\mathscr{F}_{B}^{\sharp}\left(M^{\sharp}\right)\right) \sqcup^{\sharp} \llbracket C_{1} \rrbracket_{\mathscr{P}}^{\sharp}\left(\mathscr{F}_{\neg B}^{\sharp}\left(M^{\sharp}\right)\right)
$$

Code:

```
def evaluate_Cmd_abs(C: Cmd, M_abs: AbstractMemory, abstraction) -> Abstra
    elif isinstance(C, IfThenElse):
        then_memory, else_memory = filter_memory_abs(C.cond, M_abs, v_abs)
        then_memory = evaluate_Cmd_abs(C.then_, then_memory, abstraction)
        else_memory = evaluate_Cmd_abs(C.else_, else_memory, abstraction)
        ite_memory = abstraction.union(then_memory, else_memory)
        return ite_memory
```


Code for filter_memory_abs

```
def filter_memory_abs(B: BoolExpr, M_abs: AbstractMemory, vabs) ->
    Tuple[AbstractMemory, AbstractMemory]:
    true_abs, false_abs = evaluate_BoolExpr_abs(B, M_abs, vabs)
    var_abs = M_abs[B.left.name]
    true_abs = vabs.refine(var_abs, true_abs)
    if true_abs != vabs.BOT:
        # may enter true part
        M_abs_true = dict(M_abs)
        M_abs_true[B.left.name] = true_abs
    else:
    M_abs_true = dict([(m, vabs.BOT) for m in M_abs])
false_abs = vabs.refine(var_abs, false_abs)
if false_abs != vabs.BOT:
        # may enter false part
        M_abs_false = dict(M_abs)
        M_abs_false[B.left.name] = false_abs
else:
            M_abs_false = dict([(m, vabs.BOT) for m in M_abs])
return M_abs_true, M_abs_false
```


Partial code for f_cmpop and refine in the Intervals domain

```
def refine(self, l, r):
    l = self._norm(l)
    r = self._norm(r)
    if l == self.BOT: return r
    if r == self.BOT: return l
    new_start = max(l[0], r[0])
    new_end = min(l[1], r[1])
    return self._norm((new_start, new_end))
def f_cmpop(self, op, left, c):
    left = self._norm(left)
    c = self._norm(c)
    # assume integers
    if op == '<':
        return (self.NINF, c[0] - 1), (c[0], self.PINF)
    elif op == '<=':
            return (self.NINF, c[0]), (c[0] + 1, self.PINF)
    elif op == '>':
        return (c[0] + 1, self.PINF), (self.NINF, c[0])
    elif op == '>=':
            return (c[0], self.PINF), (self.NINF, c[0] - 1)
    else:
            raise NotImplementedError(f'Operator {op}')
```


Partial code for f_cmpop and refine in the Signs domain

```
def refine(self, l, r):
    if self.lte(l, r): return l
    if self.lte(r, l): return r
    return self.TOP
def f_cmpop(self, op, left, c):
    # (abst of c, op) : (variable's true domain, variables false domail
    abs_results = {(self.EQZ, '<'): (self.LTZ, self.GTZ),
                        (self.EQZ, '<='): (self.LTZ, self.GTZ),
                        (self.EQZ, '>'): (self.GTZ, self.LTZ),
                        (self.EQZ, '>='): (self.GTZ, self.LTZ),
                                (self.EQZ, '!='): (self.TOP, self.EQZ),
                                (self.GTZ, '>'): (self.GTZ, self.TOP),
                                (self.GTZ, '<'): (self.TOP, self.GTZ),
                                (self.GTZ, '<='): (self.TOP, self.GTZ),
                                (self.GTZ, '>='): (self.GTZ, self.TOP),
                }
    key = (c, op)
    if key not in abs_results:
            raise NotImplementedError(f"{key} not implemented")
    return abs_results[key]
```


While: Example \#1: Infinite Loop

$$
\begin{aligned}
& \mathrm{x}:=0 \\
& \text { while }(\mathrm{x}>=0) \\
& \mathrm{x}:=\mathrm{x}+1 \\
& \}
\end{aligned}
$$

If we analyze this program abstractly using signs, using \sqcup^{\sharp} to combine states across loop iterations, as we did in the concrete execution, the analysis will reach a fixpoint, which can be used to terminate the analysis.

- $M^{\sharp}(x)=\left([=0] \sqcup^{\sharp}[>=0] \sqcup^{\sharp}[>=0]\right)=[>=0]$

If we analyze this program abstractly using intervals, the analysis will not terminate.

- $M^{\sharp}(x)=[0,0] \sqcup^{\sharp}[1,1]\left\llcorner^{\sharp}[2,2]\left\llcorner^{\sharp}[3,3] \ldots\right.\right.$

While: Example \#2: Infinite Loop

```
x := 0
while(x <= 100)
    if (x >= 50) {
        x := 10
    } else {
        x := x + 1
    }
}
```

If we analyze this program abstractly using signs, the analysis terminates as in the previous example

- $M^{\sharp}(x)=\left([=0] \sqcup^{\sharp}[>=0] \sqcup^{\sharp}[>=0]\right)=[>=0]$

If we analyze this program abstractly using intervals, the analysis also terminates, but after 50 analysis iterations.

- $M^{\sharp}(\mathrm{x})=[0,0] \sqcup^{\sharp}[0,1] \sqcup^{\sharp}[0,2] \sqcup^{\sharp} \ldots \sqcup^{\sharp}[0,50] \sqcup^{\sharp}[0,50]=[0,50]$

Observations

- Signs is a lattice with a finite height
- \sqcup^{\sharp} will eventually reach a fix point
- The Intervals lattice does not have a finite height
- No such guarantees

Widening Operator

- Define an operator ∇ so that the sequence will explicitly reach a stationary point
- Soundness condition

$$
\gamma\left(a_{0}\right) \cup \gamma\left(a_{1}\right) \subseteq \gamma\left(a_{0} \nabla a_{1}\right)
$$

- For all $\left(a_{n}\right)_{n \in \mathbb{N}}$, the sequence $\left(a_{n}^{\prime}\right)_{n \in \mathbb{N}}$ is ultimately stationary:
- $a_{0}^{\prime}=a_{0}$
- $a_{n+1}^{\prime}=a_{n}^{\prime} \nabla a_{n}$

Code for Widening Operator for Intervals

```
def widen(self, x, y):
    # assume x is previous and y is current
    # compute a_n
    u = self.lub(x, y)
    if u[0] == x[0]:
        # stationary left
        return (u[0], u[1] if u[1] == x[1] else self.PINF)
    elif u[1] == x[1]:
        # stationary right
        return (u[0] if u[0] == x[0] else self.NINF, u[1])
    else:
        return u
```


Abstract Semantics for While

$$
\llbracket \operatorname{while}(B)\{C\} \rrbracket_{\mathscr{P}}^{\sharp}\left(M^{\sharp}\right)=\mathscr{F}_{\neg B}^{\sharp}\left(\text { abs_iter }\left(\llbracket C \rrbracket_{\mathscr{P}}^{\sharp} \circ \mathscr{F}_{B}^{\sharp}, M^{\sharp}\right)\right)
$$

Code:
def evaluate_Cmd_abs(C: Cmd, M_abs: AbstractMemory, abstraction) ->

```
elif isinstance(C, While):
        def F_abs(MM_abs):
            pre_memory, _ = filter_memory_abs(C.cond, MM_abs,
                                    v_abs)
            post_memory = evaluate_Cmd_abs(C.body, pre_memory,
                                    abstraction)
            return post_memory
            _, out = filter_memory_abs(C.cond,
                        abs_iter(F_abs, M_abs,
                        abstraction),
                        v_abs)
    return out
```


abs_iter in code

```
def abs_iter(F_abs, M_abs, abstraction):
    R = M_abs
    while True:
        T = R
        if abstraction.dom.finite_height:
            R = abstraction.union(R, F_abs(R))
        else:
            R = abstraction.widen(R, F_abs(R))
        if R == T: break
    return T
```


Outline

```
Recap
Value Abstractions
Computable Abstract Semantics
```

Postscript

References

- Code that accompanies this lecture can be found in GitHub repository:
- Abstract Domains: dom_signs.py and dom_intervals.py
- Non-Relational Abstraction: abstractions.py
- Abstract Semantics: sem_abs.py
- Chapter 3 of Rival and Yi.
- This covers compositional semantics
- Also has examples of relational domains (convex polyhedra)
- Abstract interpretation can also be performed using transitional semantics
- Chapter 4 of Rival and Yi

