CSC2/455 Software Analysis and Improvement Abstract Interpretation - II

Sreepathi Pai
March 29, 2023
URCS

Outline

Introduction

A Tiny Language and Its Semantics

To be continued

Outline

Introduction

A Tiny Language and Its Semantics

To be continued

Previous lecture

- We learnt about program analysis tools beyond iterative dataflow analysis
- Abstract Interpretation
- Maps concrete states of programs to abstract states
- Abstract states belong to an abstract domain: signs, intervals, convex polyhedra, ...
- Define transfer functions to convert pre-condition (input) states to post-condition (output) states
- Union for alternate paths
- Widen for loops
- This lecture:
- Concrete Semantics for a small language

A note on the presentation

- This lecture defines a number of formal concepts and is notation-heavy.
- I also provide an equivalent formal notation in (Python) code to hopefully make it easier

Outline

Introduction

A Tiny Language and Its Semantics

To be continued

A Tiny Language: Grammar

$$
\begin{aligned}
& n \in \mathbb{V} \\
& \mathrm{x} \in \mathbb{X} \\
& \odot::=+|-|*| \ldots \\
& \theta::=<|\leq|>|==| \ldots
\end{aligned}
$$

- n is a set of concrete values, here we shall treat $\mathbb{V}=\mathbb{Z}$
- All values are integers
- x is the name of a variable. The set \mathbb{X} contains all variable names.
- \odot represents arithmetic binary operators
- θ represents boolean binary operators

A Tiny Language: Expressions

$$
\begin{aligned}
& E::=n|\mathrm{x}| E \odot E \\
& B::=\mathrm{x} \otimes n
\end{aligned}
$$

- An arithmetic expression E is:
- a number, or
- a variable name,
- or a binary expression
- A boolean expression B is:
- a variable,
- a boolean operator
- a constant n

Python AST

```
from typing import Union
from typing_extensions import Literal
BinaryOps = Literal['+', '-', '*', '/']
ComparisonOps = Literal['<', '>', '==', '<=', '>=', '!=']
Scalar = int # restrict Scalars to ints in this implementation
class Node(object):
    pass
class Var(Node):
        def __init__(self, name: str):
        self.name = name
        def __str__(self):
        return self.name
Expr = Union[Scalar, Var, 'BinOp']
```

- This is Python 3 augmented with types
- Union stands for a union type

AST for BinOp and BoolExpr

```
class BinOp(Node):
    def _-_init__(self, op: BinaryOps, left: Expr, right: Expr):
        self.left = left
        self.right = right
class BoolExpr (Node):
    def __init__(self, op: ComparisonOps, left: Var, right: Scalar):
        self.op = op
        self.left = left
        self.right = right
```

- Nothing special here, each component of the grammar is stored in the respective AST nodes
- I'm eliding implementations of __str__, indicated by '...'

Commands in the language

$$
\begin{aligned}
& C::= \\
& \quad \text { skip } \\
& \mid C ; C \\
& \mid x:=E \\
& \mid \operatorname{input}(\mathrm{x}) \\
& \mid \operatorname{if}(B)\{C\} \text { else }\{C\} \\
& \quad \mid \text { while }(B)\{C\} \\
& P::=C
\end{aligned}
$$

AST nodes for commands

```
class Cmd(Node):
    pass
class Skip(Cmd):
    def __init__(self):
        pass
class Seq(Cmd):
    def __init__(self, cmd0: Cmd, cmd1: Cmd):
        self.cmd0 = cmdO
        self.cmd1 = cmd1
class Assign(Cmd):
    def __init__(self, left: Var, right: Expr):
        self.left = left
        self.right = right
class Input(Cmd):
    def __init__(self, var: Var):
        self.var = var
    def __str__(self):
        return f"input({self.var})"
class IfThenElse(Cmd):
    def __init__(self, cond: BoolExpr, then_: Cmd, else_: Cmd):
        self.cond = cond
        self.then_ = then_
        self.else_ = else_
class While(Cmd):
    def __init__(self, cond: BoolExpr, body: Cmd):
        self.cond = cond
        self.body = body
class Program(Node):
    def __init__(self, cmd: Cmd):
        self.program = cmd
```


Representing Programs

```
if(x > 7) {
    y := (x - 7)
} else {
    y := (7 - x)
}
```

can be represented using the AST as:

$$
\begin{aligned}
& \mathrm{x}=\operatorname{Var}\left({ }^{\prime} \mathrm{x}^{\prime}\right) \\
& y=\operatorname{Var}(' y ') \\
& \mathrm{t}=\text { Program(IfThenElse (BoolExpr('>', } \mathrm{x}, 7 \text {), } \\
& \text { Assign(y, BinOp('-', x, 7)), } \\
& \text { Assign(y, BinOp('-', 7, x)) } \\
& \text {) } \\
& \text {) }
\end{aligned}
$$

Executing programs

To execute programs represented as ASTs, we need the following:

- Storage/Memory: to track values of variables
- Semantics: to express what each command does, usually mathematical
- Denotational semantics ("input/output" semantics)
- Operational semantics
- Axiomatic semantics
- and many others...

Memory/Storage

$$
\mathbb{M}=\mathbb{X} \rightarrow \mathbb{V}
$$

- A store (from storage) is a map/function from variables to values
- We'll represent it as (assuming $\mathbb{X}=\{\mathrm{x}, \mathrm{y}\}$):

$$
m=\{\mathrm{x} \rightarrow 3, \mathrm{y} \rightarrow 4\}
$$

- Store (or memory) maps x to 3 and y to 4 .
- So, $m(\mathrm{x})=3$, and $m(\mathrm{y})=4$

Memory/Storage (Python)

```
from typing import Dict, List
    # using str instead of Var, with Var.name as the key.
    # This is accidental.
Memory = Dict[str, int]
x = Var('x')
y = Var('y')
m = {x.name: 3, y.name: 4}
print(m[x.name])
print(m[y.name])
```


Semantics of Arithmetic Expressions

- The semantics of an expression E depend on the memory store m
- We use $\llbracket E \rrbracket(m)$ to denote its semantics
- We'll define $\llbracket E \rrbracket(m)$ over its grammar as:

$$
\begin{aligned}
\llbracket n \rrbracket(m) & =n \\
\llbracket \mathrm{x} \rrbracket(m) & =m(\mathrm{x}) \\
\llbracket E_{0} \odot E_{1} \rrbracket(m) & =f_{\odot}\left(\llbracket E_{0} \rrbracket(m), \llbracket E_{1} \rrbracket(m)\right)
\end{aligned}
$$

- Here f_{\odot} is the function that implements \odot, for example:
- $f_{+}(a, b)=a+b$

Arithmetic Expression Semantics in Python

```
def f_binop(op: BinaryOps, left: Scalar, right: Scalar) -> Scalar:
    if op == '+':
        return left + right
    elif op == '-':
        return left - right
    elif op == '*':
        return left * right
    elif op == '/':
        return left // right
    else:
        raise NotImplementedError(f"Unknown operator: {op}")
def evaluate_Expr(E: Expr, m: Memory) -> Scalar:
    if isinstance(E, Scalar):
        return E
    elif isinstance(E, Var):
        return m[E.name]
    elif isinstance(E, BinOp):
        return f_binop(E.op,
                        evaluate_Expr(E.left, m),
                        evaluate_Expr(E.right, m))
```


Semantics of Boolean Expressions

- Let \mathbb{B} be the set $\{$ true, false $\}$
- The semantics of a boolean expression is then $\llbracket B \rrbracket: \mathbb{M} \rightarrow \mathbb{B}$

$$
\llbracket \mathrm{x} \otimes n \rrbracket(m)=f_{\otimes}(m(\mathrm{x}), n)
$$

which can be expressed in Python as:

```
def f_cmpop(op: ComparisonOps, left: Scalar, right: Scalar) -> bool:
    if op == '<':
        return left < right
    elif op == '>':
        return left > right
def evaluate_BoolExpr(B: BoolExpr, m: Memory) -> bool:
    return f_cmpop(B.op, m[B.left.name], B.right)
```


Semantics of other commands

- Both $\llbracket E \rrbracket$ and $\llbracket B \rrbracket$ are building blocks for the semantics of other commands
- While they were defined on a single memory store m, we're going to define the semantics for commands on a set of memory states M
- So, $m \in M$, and $M \in \wp(\mathbb{M})$
- where $\wp(\mathbb{M})$ denotes the powerset of memory stores
- This way, our semantics for commands $\llbracket \cdot \rrbracket_{\mathscr{P}}$ will convert a set of input states to a set of output states

Command Semantics - \#1

$$
\begin{aligned}
\llbracket C \rrbracket_{\mathscr{P}} & : \wp(\mathbb{M}) \rightarrow \wp(\mathbb{M}) \\
\llbracket \operatorname{skip} \rrbracket_{\mathscr{P}}(M) & =M \\
\llbracket C_{0} ; C_{1} \rrbracket_{\mathscr{P}}(M) & =\llbracket C_{1} \rrbracket_{\mathscr{P}}\left(\llbracket C_{0} \rrbracket_{\mathscr{P}}(M)\right) \\
\llbracket \mathrm{x}:=E \rrbracket_{\mathscr{P}}(M) & =\{m[\mathrm{x} \mapsto \llbracket E \rrbracket(m) \rrbracket \mid m \in M\} \\
\llbracket \operatorname{input}(\mathrm{x}) \rrbracket_{\mathscr{P}}(M) & =\{m[\mathrm{x} \mapsto n \rrbracket \mid m \in M, n \in \mathbb{V}\}
\end{aligned}
$$

- The notation $m[\mathrm{x} \mapsto n]$ is a memory update, it creates a new store identical to m except that x is updated to n
- input(x) updates variable x with a non-deterministic value n

Command Semantics - Python

```
def evaluate_Cmd(C: Cmd, M: List[Memory]) -> List[Memory]:
    def update_memories(var, value_lambda):
        out = []
        for m in M:
            m_out = dict(m)
            m_out[var] = value_lambda(m)
            out.append(m_out)
    return out
    if isinstance(C, Skip):
        return M
    elif isinstance(C, Program):
        return evaluate_Cmd(C.program, M)
    elif isinstance(C, Assign):
        return update_memories(C.left.name,
                            lambda m: evaluate_Expr(C.right, m))
    elif isinstance(C, Input):
        n = random.randint(0, 100) # could be anything, actually
        return update_memories(C.var.name, lambda _: n)
    elif isinstance(C, Seq):
        return evaluate_Cmd(C.cmd1, evaluate_Cmd(C.cmdO, M))
```

- I've chosen M to be a list of memories (recall Memory is a Dict[str, int])

Example of using evaluate_Cmd

$$
\begin{aligned}
& \mathrm{x}=\operatorname{Var}\left({ }^{\prime} \mathrm{x}\right. \text { ') } \\
& y=\operatorname{Var}(' y \text { ') } \\
& \text { m1 = \{x.name: 3, y.name: 4\} } \\
& \text { m2 = \{x.name: 5, y.name: } 6\} \\
& \text { M_in = [m1, m2] } \\
& \text { M_out = evaluate_Cmd(Assign(x, 7), M_in) } \\
& \text { \# M_out = [\{'x': 7, 'y': 4\}, \{'x': 7, 'y': 3\}] }
\end{aligned}
$$

Command Semantics for If - \#1

$$
\llbracket i f(B)\left\{C_{0}\right\} \text { else }\left\{C_{1}\right\} \rrbracket_{\mathscr{P}}(M)=\text { ? }
$$

- C_{0} (the code executing when B is true) must only operate on $m \in M$ where $\llbracket B \rrbracket(m)$ evaluates to true.
- C_{1} (the code executing when B is false) must only operate on $m \in M$ where $\llbracket B \rrbracket(m)$ evaluates to false.
- Define a filter function $\mathscr{F}_{B}(M)$ such that

$$
\mathscr{F}_{B}(M)=\{m \in M \mid \llbracket B \rrbracket(m)=\text { true }\}
$$

- Note: $\mathscr{F}_{\neg B}$ will give us the memories where B is false.

Command Semantics for If - \#2

$$
\llbracket \operatorname{if}(B)\left\{C_{0}\right\} \text { else }\left\{C_{1}\right\} \rrbracket_{\mathscr{P}}(M)=\llbracket C_{0} \rrbracket_{\mathscr{P}}\left(\mathscr{F}_{B}(M)\right) \cup \llbracket C_{1} \rrbracket_{\mathscr{P}}\left(\mathscr{F}_{\neg B}(M)\right)
$$

- Find stores where B is true, evaluate C_{0} over them
- Find stores where B is false, evaluate C_{1} over them
- Combine the two results using \cup

Command Semantics for If in Python

def filter_memory(B: BoolExpr, M: List [Memory], res = True) -> List [Memory out $=$ [m for m in M if evaluate_Bool $\operatorname{Expr}(B, m)==r e s]$ return list(out)
def evaluate_Cmd(C: Cmd, M: List[Memory]) -> List[Memory]:
elif isinstance(C, IfThenElse):
then_memory = evaluate_Cmd(C.then_, filter_memory (C.cond, M)) else_memory = evaluate_Cmd(C.else_, filter_memory(C.cond, M, res = False))
return union_memories(then_memory, else_memory)
def union_memories(M0: List[Memory], M1: List[Memory]) -> List [Memory]: \# this implementation is, of course, ridiculous
\# convert everything to sets
MO_set $=$ set([frozenset(m.items()) for m in MO])
M1_set $=$ set ([frozenset(m.items()) for m in M1])
M_set = M0_set.union(M1_set)
\# convert back to lists of dicts return list([dict(m) for m in M_set])

Semantics for While - \#1

$$
\llbracket w h i l e(B)\{C\} \rrbracket_{\mathscr{P}}(M)
$$

- B must be true in $m \in M$ to execute C once
- $\left(\llbracket C \rrbracket_{\mathscr{P}} \circ \mathscr{F}_{B}\right)(M)$
- Executing C twice is similar:
- $\left(\llbracket C \rrbracket_{\mathscr{P}} \circ \mathscr{F}_{B}\right)\left(\left(\llbracket C \rrbracket_{\mathscr{P}} \circ \mathscr{F}_{B}\right)(M)\right)$
- Let F be $\llbracket C \rrbracket_{\mathscr{P}} \circ \mathscr{F}_{B}$, then execution i times is represented as
- $F^{i}(M)$, i.e. $F(F(F(M)))$ for $i=3$
- If the loop executes i times and exits, the memory stores are:
- $M_{i}=\mathscr{F}_{\neg B}\left(F^{i}(M)\right)$, because B must be false when we exit the loop

Semantics for While - \#2

- Let $M_{i}=\mathscr{F}_{\neg B}\left(F^{i}(M)\right)$ represent executions of the loop body exactly i times, $i \geq 0$
- Then we can define the semantics of those i executions as:

$$
\begin{aligned}
\bigcup_{i \geq 0} M_{i} & =\bigcup_{i \geq 0} \mathscr{F}_{\neg B}\left(F^{i}(M)\right) \\
& =\mathscr{F}_{\neg B}\left(\bigcup_{i \geq 0} F^{i}(M)\right) \\
\llbracket \text { while }(B)\{C\} \rrbracket_{\mathscr{P}}(M) & \left.=\mathscr{F}_{\neg B}\left(\bigcup_{i \geq 0}\left(\llbracket C \rrbracket_{\mathscr{P}} \circ \mathscr{F}_{B}\right)^{i}(M)\right)\right)
\end{aligned}
$$

- The semantics of a non-terminating loop are undefined.

While semantics, Python implementation

```
def evaluate_Cmd(C: Cmd, M: List[Memory]) -> List[Memory]:
    elif isinstance(C, While):
        # LO
        out = [m for m in M] # copy all input states
        pre_iter_memories = filter_memory(C.cond, out)
        accum: List[Memory] = []
        while len(pre_iter_memories):
            after_iter_memories = evaluate_Cmd(C.body, pre_iter_memories)
            accum = union_memories(accum, after_iter_memories)
            # only keep memories where the condition is true
            pre_iter_memories = filter_memory(C.cond, after_iter_memories)
        # This computes L0 U (L1 U L2...) and retains only those
        # memory states where the loop has terminated.
        out = filter_memory(C.cond, union_memories(out, accum), res=False)
        return out
```


Example of While execution

```
while(x < 7) {
    y := (y + 1);
    x := (x + 1)
}
START [{x: 4, y: 0}, {x: 5, y: 0}, {x: 8, y: 0}]
pre: [{x: 4, y: 0}, {x: 5, y: 0}]
after: [{x: 5, y: 1}, {x: 6, y: 1}]
accum: [{x: 5, y: 1}, {x: 6, y: 1}]
pre: [{x: 5, y: 1}, {x: 6, y: 1}]
after: [{x: 6, y: 2}, {x: 7, y: 2}]
accum: [{x: 5, y: 1}, {x: 6, y: 1}, {x: 7, y: 2},
    {x: 6, y: 2}]
pre: [{x: 6, y: 2}]
after: [{x: 7, y: 3}]
accum: [{x: 7, y: 3}, {x: 6, y: 2}, {x: 5, y: 1},
    {x: 6, y: 1}, {x: 7, y: 2}]
END
    [{x: 7, y: 3}, {x: 7, y: 2}, {x: 8, y: 0}]
```


Wrapping up the semantics

- $\llbracket C \rrbracket_{\mathscr{P}}(\emptyset)=\emptyset$
- Starting from an empty set of states leads to an empty set of states
- Key ideas:
- Grammar \rightarrow AST
- AST \rightarrow Semantics
- Semantics \rightarrow Interpreter

Outline

Introduction

A Tiny Language and Its Semantics

To be continued

Next lecture

- Abstraction, and building an abstract interpreter
- This lecture was based on material from Chapter 3 in Rival and Yi
- You can find the Python code on GitHub
- This lecture covered tinyast.py and sem.py

