
CSC2/458 Parallel and Distributed Systems

Parallel Data Structures - III

Sreepathi Pai

March 1, 2018

URCS

Outline

Some Non-Blocking Data Structures

Outline

Some Non-Blocking Data Structures

The M&S Queue

Handout: Pg 126 of MLS

Sequential semantics of a Queue

• Enqueue

• Prev tail node T → next points to new node N

• Tail pointer points to node N

• Dequeue (if queue is empty)

• Returns empty

• Dequeue (if queue is not empty)

• Returns node H pointed to by head

• New head points to node in H− > next

CAS names

In enqueue:

• CAS1: if CAS(&t.p->next) ...

• CAS2: (void) CAS(&tail, t, <n.p, t.c+1>)

• CAS3: (void) CAS(&tail, t, <w, t.c+1>)

In dequeue

• CAS4: (void) CAS(&tail, t, <n.p, t.c+1>)

• CAS5: (void) if CAS(&head, h, <n.p, h.c+1>)

• Which of these CASes enforce the semantics?

• Which are the linearization points?

Memory Management in M&S Queue

• new in enqueue

• Why the fence(W||W)?

• free for reuse in dequeue

• What is this?

• Could we not simply:

rtn := n.p->val.load()
if CAS(&head, h, <n.p, h.c+1>)

fence(W||W)
free(h.p)
break

Memory Reclamation

How do we prevent premature reclamation of allocated data?

• while somebody is holding a reference to it?

Performance

• No way to theoretically model the performance of these
concurrent data structures yet.

• in advance

• Run microbenchmarks on concurrent data structures

• measure throughput

	Some Non-Blocking Data Structures

