CSC290/420 Data Formats

Sreepathi Pai September 10/15, 2025

URCS

Outline

Introduction

Bits, Functions and Boolean Algebra

Machine Data Types

Interpreting Bits as Integers

Bitfields

Real Numbers

The IEEE Floating Point Standards

Arbitrary Precision

Outline

Introduction

Bits, Functions and Boolean Algebra

Machine Data Types

Interpreting Bits as Integers

Bitfields

Real Numbers

The IEEE Floating Point Standards

Arbitrary Precision

Real World Data

- Numbers
- Text
- Pictures
- Audio
- Scents
- ..

Most can be encoded as numbers

Building Blocks of the Digital Universe

And most numbers can be encoded as binary digits (or *bits*), consisting of the values 0 and 1.

Bits in the Physical World

- In classical computers, usually voltages
- HIGH voltage indicates 1, LOW voltage indicates 0
- Actual voltages depend on logic family
 - for TTL, (V_{CC}) 5V: 0-0.8V is LOW, and 2V-5V is HIGH
 - for CMOS, much wider range, but 5V and 3.3V common
- In quantum computers, other weird phenomena
 - Read *The Talk*, if interested

Outline

Introduction

Bits, Functions and Boolean Algebra

Machine Data Types

Interpreting Bits as Integers

Bitfields

Real Numbers

The IEEE Floating Point Standards

Arbitrary Precision

AND

 \bullet $\ensuremath{\textit{AND}}$ outputs 1 only when both inputs are 1

а	Ь	Output
0	0	0
0	1	0
1	0	0
1	1	1

OR

- OR outputs 1 if either input is 1
 - hence, "inclusive or"
 - not how it is used in English!

а	Ь	Output
0	0	0
0	1	1
1	0	1
1	1	1

XOR

- XOR, 1 only when exactly one of its input is 1
 - hence, "exclusive or"
 - pronounced "ecks-or" (i.e. x-or) or "zor"
 - I prefer the latter...

а	Ь	Output
0	0	0
0	1	1
1	0	1
1	1	0

NAND and **NOR**

• NAND = NOT(AND(a, b))

а	b	Output
0	0	1
0	1	1
1	0	1
1	1	0

• NOR = NOT(OR(a, b))

а	b	Output
0	0	1
0	1	0
1	0	0
1	1	0

- NAND and NOR are universal gates
 - Can be used to implement any boolean function

Examples of NAND

- What should ? be in the following examples to make LHS = RHS?
 - NOT(a) = NAND(a,?)
 - AND(a, b) = NAND(NAND(a, b), ?)
 - OR(a, b) = ?

Generalizing to inputs longer than one bit

- Inputs longer than one bit are called:
 - bit vectors
 - bit strings
 - or more specific names for particular names (e.g. 8 bits = byte)

	b_7	b_6	b_5	b_4	b_3	b_2	b_1	b_0
	0	1	0	1	1	0	0	1
AND	0	1	1	1	0	1	1	0
	0	1	0	1	0	0	0	0

- Each bit in the first 8-bit input is ANDed to its corresponding bit in the second input
- The AND operates on each pair of bits separately

Logic and Boolean Algebra

- Logical variables take only values TRUE and FALSE
- Logical operations are operations on these values
 - e.g., "Not True = False"
- Systematized by George Boole in 1847
 - Later expounded in *The Laws of Thought*, 1854
- Claude Shannon connected boolean algebra to digital circuit design
 - Originally, to design circuits that used electromechanical relays as switches
 - Now digital circuits use transistors, but principles are the same
 - Also coined the word "bit" later...

Outline

Introduction

Bits, Functions and Boolean Algebra

Machine Data Types

Interpreting Bits as Integers

Bitfields

Real Numbers

The IEEE Floating Point Standards

Arbitrary Precision

Bits, Bytes, Words, ...

- Almost no machine allows manipulation of single bits directly
- Bits are handled as aggregations

Size (bits)	Common Name
8	byte
16	word, halfword
32	word, doubleword
64	word, doubleword, quadword
128	?

- A machine word (sometimes the word "machine" is omitted)
 is the size (in bits) of data that a machine can manipulate at
 once.
 - Hence 16-bit machines, 32-bit machines, 64-bit machines, etc.

Reading a byte

$$b_7$$
 b_6 b_5 b_4 b_3 b_2 b_1 b_0
0 1 1 0 1 1 0 1
 2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0

- In place-value notation, $b_0 = 1$ and $b_7 = 2^7 = 128$
 - \bullet Hence, this is $1\times 2^6+1\times 2^5+1\times 2^3+1\times 2^2+1\times 2^0=109$
- The grouping of 4 bits together is called a nybble (i.e. half a byte)
 - Primarily improves readability
 - But can also be used to easily convert to base-16 (i.e. hexadecimal)
- b_0 (i.e. rightmost bit) is called the least significant bit (LSB)
 - contributes the smallest value (20)
- b_7 (i.e. leftmost bit) is called the most significant bit (MSB)
 - contributes the most value (2⁷)

Hexadecimal

- Numbers in base 16
 - 0 to 9 and A to F
 - Usually indicated by a 0x prefix, or a 16 subscript
 - e.g., $0xA = A_{16} = 10_{10} = 1010_2$
- $109_{10} = 01101101_2 = 0 \times 6D$
- Hexadecimal is widely used in low-level code

Multibyte Data Types and Memory Layout

- The 16-bit value 51996₁₀ has hexadecimal representation 0xCAFE
 - Its binary representation is 1100 1010 1111 1110₂
 - The value 0xCA is its most significant byte
 - The value 0xFE is its least significant byte
- RAM is byte addressable
 - Can read individual bytes of a multibyte value
 - How should we order each byte of a multibyte value?

Little and Big-endian

- Storing a 32-bit value 0xDEADCAFE in memory
- Big endian: Most significant byte at lower addresses
- Little endian: Least significant byte at lower addresses

address	X	x + 1	x + 2	x + 3
big-endian	0×DE	0xAD	0×CA	0×FE
little-endian	0×FE	0xCA	0xAD	0xDE

- Different machines use different conventions
 - Intel/AMD usually little endian
 - SPARC/PowerPC usually big endian
 - ARM can switch between the two
- Big endian is sometimes called network byte order
 - Similar problem: which byte of a word gets on the wire first?

The Interpreter of Bits

- Does the byte 0x55 in memory indicate:
 - The integer value 85?
 - The Intel assembly language instruction push %rbp
- There is nothing in 0x55 that can distinguish between these two interpretations
 - Very powerful idea
 - Code can be data and data can be code

Outline

Introduction

Bits, Functions and Boolean Algebra

Machine Data Types

Interpreting Bits as Integers

Bitfields

Real Numbers

The IEEE Floating Point Standards

Arbitrary Precision

Integers

- The most common interpretation of bytes, words, etc. is that as "integers"
 - Whole numbers (no fractional part)
 - Can be positive or negative
- Examples: -3, -2, -1, 0, 1, 2, 3

How many bits are required?

- The number of bits required to store N distinct values is [log₂(N)]
 - i.e. logarithm of N to the base 2
 - i.e. find x such that $2^x = N$, and round it up
- Example #1: There are two possible values for sign, so N=2
 - $log_2(2) = 1$, so one bit is required to store sign
- Example #2: If N is 200, then $x = log_2(200) = 7.644$, so 8 bits are required

Stuffing numbers into a byte: Sign-Magnitude

- A byte has 8 bits
- One bit is used for the sign, 7 bits left
- Can store magnitudes from 0 to $2^7 = 127$
- Let MSB be sign bit
- Let other bits store magnitude
- ullet Can store numbers from -127 to +127

	b_7	b_6	b_5	b_4	b_3	b_2	b_1	b_0
$+89_{10}$	0	1	0	1	1	0	0	1
-89_{10}	1	1	0	1	1	0	0	1
010	0	0	0	0	0	0	0	0
-0_{10}	1	0	0	0	0	0	0	0

Stuffing numbers into a byte: One's Complement

- Can store magnitudes from 0 to $2^7 = 127$
- Let MSB be sign bit
- Let other bits store magnitude
 - except if sign bit is set, magnitude must be complemented
 (i.e. inverted) to get actual value
 - one's complement of bit value x is 1-x, i.e. the same as NOT(x)
- Represents numbers from -127 to +127

	b_7	b_6	b_5	b_4	b_3	b_2	b_1	b_0
$+89_{10}$	0	1	0	1	1	0	0	1
-89_{10}	1	0	1	0	0	1	1	0
010	0	0	0	0	0	0	0	0
-0_{10}	1	1	1	1	1	1	1	1

Stuffing numbers into a byte: Two's Complement

- Can store magnitudes from 0 to $2^7 = 127$
- Let MSB be sign bit
- Let other bits store magnitude
 - To negate a number, complement all its bits and add 1
- Can store numbers from -128 to 127

	b_7	b_6	b_5	b_4	b_3	b_2	b_1	b_0
$+89_{10}$	0	1	0	1	1	0	0	1
-89_{10}	1	0	1	0	0	1	1	1
010	0	0	0	0	0	0	0	0
-0_{10}	0	0	0	0	0	0	0	0
-128_{10}	1	0	0	0	0	0	0	0

Integer Representations

- There is more than one way to represent the same integer
 - Sign-magnitude
 - One's complement
 - Two's complement
- Some of them are non-intuitive
 - negative and positive zeroes
 - asymmetric ranges [-128, 127]
- All of them have different hardware implications
 - Addition and subtraction circuits differ
- Generally, most computers you will encounter use two's-complement arithmetic

Integers in C

• Basic C types:

```
char a;
short b; /* alternative form: short int */
int c;
long d; /* alternative form: long int */
long long e;
```

- C implementations are required to provide a minimum size for each type
 - char must be at least 8 bits
 - int must be at least 16 bits
 - long must be at least 32 bits
 - long long must be at least 64 bits
- The prefix unsigned (e.g. unsigned char) allows all bits to be used to store the magnitude (i.e. there is no sign bit).
 - char must be able to store [-127, 127]
 - unsigned char must be able to store [0, 255]
 - C23 requires support for two's complement

Fixed-width Integers in C99

```
#include <stdint.h>
int8_t a; /* signed 8-bit integer */
uint8_t ua; /* unsigned 8-bit integer */
int32_t b; /* signed 32-bit integer */
uint32_t ub; /* unsigned 32-bit integer */
...
```

- C99 is the C standard "version" 1999.
 - Finally allowed fixed-width types
 - Still does not mandate any particular representation (C23 does!)
- The variables INT8_MIN and INT8_MAX contain the range for int8_t
 - similarly, UINT8_MIN and UINT8_MAX contain the range uint8_t

Outline

Introduction

Bits, Functions and Boolean Algebra

Machine Data Types

Interpreting Bits as Integers

Bitfields

Real Numbers

The IEEE Floating Point Standards

Arbitrary Precision

Bitpacking

- Sometimes space is at a premium
- Want to use as few bits as possible
- Bitfields:
 - Partition a machine word into distinct fields

Example

 Suppose we want to store day and day of the week using as little space as possible

```
uint8_t day = 9;
uint8_t dow = MON;
```

- Day takes value 1-31
 - Bits required: ?
- Day of week takes 0 (SUN)– 6(SAT)
 - Note here we want to store 1 of 7 values
 - Bits required: ?
- Total storage used by two uint8_t variables: 16 bits
- Bits wasted: ?

Minimum Bits using Bitfields

```
enum days_of_week {
   SUN = 0,
   MON = 1,
   TUE = 2,
   WED = 3,
   THU = 4,
   FRI = 5,
   SAT = 6
};
```

	b ₇	<i>b</i> ₆	<i>b</i> ₅	<i>b</i> ₄	<i>b</i> ₃	<i>b</i> ₂	b_1	b_0
Mon 9	0	1	0	0	1	0	0	1
	Day of Month					Day	of V	Veek

Constructing a bitfield

```
uint8_t daydow;
daydow = (9 << 3) | MON;</pre>
```

- Here, 9 is the day
- It is *left-shifted* by 3 bits using the left-shift (<<) operator
 - Empty positions at right are filled with zeroes
 - Bits at left are discarded
 - Like multiplying by 10³ in the metric system, except here we're multiplying by 2³
 - 0x9 (binary 1001) becomes 0x48 (binary 0100 1000)
- Then we OR the day of the week into the freshly created lower 3 zero bits

Getting the Day of the Week

	b ₇	<i>b</i> ₆	<i>b</i> ₅	<i>b</i> ₄	<i>b</i> ₃	b_2	b_1	<i>b</i> ₀
Mon 9	0	1	0	0	1	0	0	1
	Day of Month					Day of Week		
result	0	0	0	0	0	0	0	1

- We want to force the day (of month) field to zero.
- What are OP and MASK?

dow = daydow OP MASK;

Getting the Day of the Week (Solution)

	b ₇	<i>b</i> ₆	<i>b</i> ₅	<i>b</i> ₄	<i>b</i> ₃	<i>b</i> ₂	b_1	<i>b</i> ₀	
Mon 9	0	1	0	0	1	0	0	1	
	Day of Month					Day of Week			
mask	0	0	0	0	0	1	1	1	
result	0	0	0	0	0	0	0	1	

• We want to force the day (of month) field to zero.

dow = daydow & 0x7;

Getting Day of Month

	b ₇	<i>b</i> ₆	b_5	<i>b</i> ₄	<i>b</i> ₃	<i>b</i> ₂	b_1	<i>b</i> ₀	
Mon 9	0	1	0	0	1	0	0	1	
	Day of Month					Day of Week			
mask	1	1	1	1	1	0	0	0	
result	0	1	0	0	1	0	0	0	

C code, all bits except lower 3
 day = daydow & (0x1f << 3);

• Is the result what we want?

Undoing the left shift

```
day = (daydow & (0x1f << 3)) >> 3;
```

- We got 0x48 because we had shifted it left
- We can undo it by doing a right shift by 3 bits using the right-shift >>) operator
 - Bits at right are discarded
 - Like dividing by 2³, and throwing away the remainder/fractional part
 - 0x48 (binary 0100 1000) becomes 0x9 (binary 0000 1001)

Even shorter ...

```
day = (daydow >> 3) & 0x1f;
```

- Since we're using uint8_t, the masking is superfluous
- For unsigned integers, right shifting will fill in bits at left with 0
- Since all bits to the left of the Day of Month field are zero, we can eliminate the mask and the AND
 - But recommend always using a mask, as good programming practice

Real-life bitfields and bitsets: Unix file permissions

- Basic File permissions (can be simultaneously enabled)
 - READ
 - WRITF
 - EXECUTE
- Permissions for
 - User/Owner
 - User's Group
 - Others

	<i>b</i> ₈	b_7	<i>b</i> ₆	b_5	<i>b</i> ₄	<i>b</i> ₃	b_2	b_1	<i>b</i> ₀	
rwxr-x	1	1	1	1	0	1	0	0	0	
	User/Owner			(Group)	Others			

Outline

Introduction

Bits, Functions and Boolean Algebra

Machine Data Types

Interpreting Bits as Integers

Bitfields

Real Numbers

The IEEE Floating Point Standards

Arbitrary Precision

Real Numbers

- **R**
- infinite (just like integers)
- but they are different infinity (uncountable)
- There are infinite real numbers between any two real numbers
- How do we represent these using a finite, fixed number of bits?
 - Say, 32 bits

The problem

- Assume 5 bits are available
- Consider 17: 10001
- Consider 18: 10010
- Where shall we put 17.5?
 - No bit pattern "halfway" between 10001 and 10010

One option

- Consider only deltas of 0.25, 0.5, 0.75
- Then
 - 17.00: 10001
 - 17.25: 10010
 - 17.50: 10011
 - 17.75: 10100
 - 18.00: 10101
- This is the basis of the idea of fixed point
 - Can't represent all numbers
 - Fixed accuracy
- Used widely in tiny computers

Representing Real Numbers

- We cannot represent real numbers accurately using a finite, fixed number of bits
 - But do we need infinite accuracy?
- How many (decimal) digits of precision do we use?
 - In our bank accounts (before and after the decimal point?)
 - In engineering?
 - In science?

On magnitudes

- Smallest length
 - Planck length, on the order of 10^{-35} (would require 35 decimal digits)
- Smallest time
 - Planck time, on the order of 10^{-44}
- Width of visible universe
 - On the order of 10^{24}
 - Lower bound on radius of universe: 10²⁷

On precision

- Avogadro's number: $6.02214076 \times 10^{23}$
 - So, actually: 602214076000000000000000
- $\pi = 3.1415... \times 10^0$
 - NASA requires about 16 decimal digits of π^1
 - We know about a trillion

https://blogs.scientificamerican.com/observations/ how-much-pi-do-you-need/

Scientific notation for numbers

• The scientific notation allows us to represent real numbers as:

$$significand \times base^{exponent}$$

For Avogadro's number:

• Significand: 6.02214076

Significand is scaled so always only one digit before the decimal point

• Base: 10

• Exponent: 23

Binary Scientific Notation

We can use scientific notation for binary numbers too:

$$1.011 \times 2^3$$

- Here, the number is:
 - $(1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3}) \times 2^3$
 - $\bullet \ \, \big(1\times 2^3+0\times 2^2+1\times 2^1+1\times 2^0\big)=11_{10}$
- Components:
 - Significand: 1.011
 - Base: 2
 - Exponent: 3

Binary Scientific Notation: Example #2

• Now with a negative exponent:

$$1.011 \times 2^{-3}$$

- Here, the number is:
 - $(1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3}) \times 2^{-3}$
 - $(1 \times 2^{-3} + 0 \times 2^{-4} + 1 \times 2^{-5} + 1 \times 2^{-6})$
 - $\bullet \ \, \big(0.125_{10}+0+0.0625_{10}+0.03125_{10}\big)=0.171875$
- Components:
 - Significand: 1.011
 - Base: 2
 - Exponent: -3

Some design notes

- Significand contains a radix point (i.e. decimal point or binary point)
 - But it's position is fixed: only one digit before the radix point
 - In binary scientific notation, this is always 1 (why?)
 - We don't need to store the radix point
 - So significand can be treated as an integer with an implicit radix point
- Base is always 2 for binary numbers
 - No need to store this
- Exponent is also an integer
 - Could be negative or positive or zero

Design notes (continued)

- So (binary) real numbers can be expressed as a combination of two fields:
 - significand (possibly a large number, say upto 10 decimal digits)
 - exponent (possibly a smallish number, say upto 44₁₀)
 - would allow us to store numbers with at least 10 decimal digits of precision, upto 44 decimal digits long
- We'll also need to store sign information for the significand and the exponent
- How many bits?
 - for 10 significant decimal digits? e.g. 9,999,999,999
 - for max. exponent 50_{10} ?
 - plus two bits for sign (one for significand, one for exponent)

Design notes (continued)

- How many bits?
 - for 10 significant decimal digits? e.g. 9,999,999,999: about 34 bits
 - for max. exponent 50? about 6 bits
 - plus two bits for sign (one for significand, one for exponent)
- Total: 34 + 6 + 2 = 42 bits
 - Could be implemented as a bitfield
 - But 42 is between 32 and 64, not efficient to manipulate
- What format should we use to store negative significands and exponents?
 - sign/magnitude
 - one's complement
 - two's complement
 - other?

Bitfield Design Constraints

- Ideally should fit sign, significand and exponent in 32 bits or 64 bits
 - Easier to manipulate on modern systems
- Arithmetic operations should be fast and "easy"
- Comparison operations should be fast and "easy"
 - e.g. should not need to extract fields and compare separately
- Should satisfy application requirements
 - esp. with accuracy, precision and rounding
 - should probably be constraint #1

Outline

Introduction

Bits, Functions and Boolean Algebra

Machine Data Types

Interpreting Bits as Integers

Bitfields

Real Numbers

The IEEE Floating Point Standards

Arbitrary Precision

IEEE 754 32-bit floating point standard

- Total size: 32-bits
 - Also called "single-precision"
 - On most systems, the C type float is single-precision
- Significand: 24 bits, roughly 7 significant (decimal) digits of accuracy
 - Sometimes called (wrongly) the Mantissa
- Exponent: 8 bits, from 2^{-126} to 2^{127} (roughly 10^{-38} to 10^{38} (decimal))
- Sign bit: 1 sign bit for the significand
 - What about sign bit for the exponent?
- Also supports special representations:
 - for $+\infty$ and $-\infty$
 - For "not-a-number" NaN, e.g. for representing (0/0)
 - "denormals"
- Note: 24 + 8 + 1 = 33, not 32

Representing the significand

1.100 1001 0000 1111 1101 1011

- 24 bits of significand
- Normalized form, only one digit before the radix point
 - Change the exponent until this is achieved (normalization)
 - That digit must be non-zero
 - Always 1
- Hence, do not need to store it!
 - Only use 23 bits for the magnitude
 - In example, only 100 1001 0000 1111 1101 1011 is stored
- Uses sign/magnitude notation (not one's or two's complement)
 - 1 bit for sign (0 for +, 1 for −)
 - 23 bits for magnitude + one always 1 implicit bit (not stored)

Appreciating Precision

One weird trick to make money from banks:

```
#include <stdio.h>
  int main(void) {
    float f;
    int i;
    f = 16777216.0;
    f = f + 3.0;
    printf("%f\n", f);

    Note that 16777216 is 2<sup>24</sup>
```

- What is the value of f that is printed?
 - A: 16777216.0
 - B: 16777219.0
 - C: 16777220.0
 - D: something else
 - E: undefined

More Surprises

```
#include <stdio.h>
int main(void) {
  float f;
  int i;
  f = 16777216.0;
 for(i = 0; i < 2000; i++) {
    f = f + 1.0:
    // printf("%f\n", f) // uncomment to see what is happening
 printf("%f\n", f);
```

- What is the value of f that is printed?
 - A: 1677**7**216.0
 - B: 1677**9**216.0
 - C: something else
 - D: undefined

This is not C specific!

- Integers in Python behave differently from C
 - Don't overflow, are always signed
 - Python's integers are like mathematical integers
- Very few languages implement mathematical reals though.
 - Most use IEEE 754
 - Python, Javascript, Java, etc.

Rounding

- IEEE floating point rounds numbers that cannot be exactly represented
- For an operation \oplus (where \oplus could be any of *mathematical* $+,-,/,\times$)
 - the standard says $x \oplus y \to Round(x \oplus y)$
- Four rounding modes
 - Round towards nearest (also known as round towards even, and default)
 - Round towards zero
 - Round towards $+\infty$
 - Round towards $-\infty$

What's happening

- 16777216.0 + 1.0 is unrepresentable
 - By default, rounding mode is round to nearest
 - Nearest is 16777216.0
 - No change!
- Why it is also called round to even
 - If an unrepresentable value is equidistant between two representable values
 - It is not possible to say which is "nearest"
 - IEEE standard picks the even value between the two representable values
- This makes floating point arithmetic non-associative
 - $(a+b)+c \neq a+(b+c)$
 - $((a+1.0)+1.0) \neq (a+(1.0+1.0))$

Representing the Exponent

- 8-bit wide bitfield
 - Can store 256 values
 - Must store values from -126 to 127 (that's 254 values)
- Uses biased representation
 - To store x, we actually store x + 127 in 8 bits
 - So 127 is stored as 254
 - And −126 is stored as 1
 - No sign bit required!
 - So field actually contains values from 1 to 254 to represent -126 to 127
- The biased values 0 and 255 are used to indicate special numbers

Why biased? Comparing exponents

Which is greater?

$$1.011 \times 2^{-3}$$

Or:

$$1.011 \times 2^{+3}$$

- Note -3 in biased notation is $-3 + 127 = 124 = 01111100_2$
- Note 3 in biased notation is $+3 + 127 = 130 = 10000010_2$

Putting it altogether

- Three bit fields
 - s: Significand Sign (1 bit)
 - M: Significand (23 bits)
 - E: Biased Exponent (8 bits)
- 6 possible ways to order them
 - s, M, E
 - s, E, M
 - M, s, E
 - M, E, s
 - E, s, M
 - *E*, *M*, *s*
- Out of familiarity, let's only consider those where s occupies higher bits than M

Comparing Three Formats

- Suppose you have two numbers:
 - $a = 1.100... \times 2^3$
 - $b = 1.010... \times 2^5$
 - Which is greater?
- Representation
 - Significand: 100...2 for a and 010...2 for b
 - Exponent: $3 + 127 = 130 = 1000\,0010_2$ and $5 + 127 = 132 = 1000\,0100_2$
 - Sign is 0 for both

Comparing Three formats (contd.)

- *s*, *M*, *E* • 0 | 100 000 ... | 1000 0010
 - 0 | 010 000 ... | 1000 0100
- s, E, M
 - 0 | 1000 0010 | 100 000 ...
 - 0 | 1000 0100 | 010 000 ...
- *E*, *s*, *M*
 - 1000 0010 | 0 | 100 000 ...
 - 1000 0100 | 0 | 010 000 ...

IEEE 754 Single Precision Format

- Uses s, E, M format
- If a number x > y, then its bitwise representation x > y
 - When sign bit is same, scan from bit 30 to 0, looking for first different bit
 - When sign bit is different, 1 in sign bit indicates less than 0 (exceptions +0 and -0)
- Can thus compare floating point numbers without having to extract bitfields!

Representing Zero

$$0 \times 2^{x}$$

- Has no leading 1
- Special representation
 - Sign bit can be 0 or 1
 - Exponent is all zeroes (i.e. it appears to be -127 stored biased, hence -126 is lower limit)
 - Magnitude is all zeroes
- Hence:
 - +0: all 32 bits are zero
 - -0: sign bit is 1, but all other bits are zero

The smallest normalized single-precision number

$$+1.000\,0000\,0000\,0000\,0000 \times 2^{-126}$$

- - | just for visual separator
- That's just 2^{-126}
 - Approximately, $1.17549435 \times 10^{-38}$
- What should happen if we divide this by two?

 - $(+1.000\,0000\,0000\,0000\,0000\times 2^{-126})/2$
 - $\bullet \ \ (+1.000\,0000\,0000\,0000\,0000\times 2^{-127})$

Let's make it zero!

- Default behaviour on many systems before IEEE754
 - Underflow to zero
- $a = 1.000\,0000\,0000\,0000\,0000 \times 2^{-126}$
- $b = 1.000\,0000\,0000\,0000\,0001 \times 2^{-126}$
- What is a b?
 - Remember, $a \neq b$
- What would x/(a-b)?

Denormals

- $a = 1.000\,0000\,0000\,0000\,0000 \times 2^{-126}$
- $b = 1.000\,0000\,0000\,0000\,0001 \times 2^{-126}$
- - Numbers of this form are called denormals or subnormals
 - They have a 0 before the radix point
- IEEE 754 specifies how to store denormals:
 - s, sign as usual
 - *E*, exponent is zero
 - M, the significand is non-zero
- This allows "gradual underflow" to zero
 - Some systems detect denormals and perform arithmetic in software
 - Slow!

Representing Infinities

0 1111 1111 000 0000 0000 0000 0000

- In the above representation,
 - Sign: 0
 - Exponent: 255
 - Significand: 0
- Exponent
 - 0 indicates either zero or a subnormal
 - 1 to 254 indicates normalized exponent -126 to 127
 - 255 indicates either infinity or NaN
- With significand zero:
 - Exponent 255 indicates $+\infty$ or $-\infty$ (depending on sign)
 - $-\infty < x < +\infty$ where x is any representable number

Representing NaNs

O 1111 1111 xxx xxxx xxxx xxxx xxxx

- In the above representation,
 - Sign: 0
 - Exponent: 255
 - Significand: $\neq 0$ (i.e. the x bits are not all zero)
- With significand non-zero:
 - Exponent 255 indicates NaN (not-a-number)
 - Produced by operations like 0/0, ∞/∞ , etc.
- *NaN*s propagate:
 - Any operation involving a NaN results in a NaN

Addition in Floating Point

Add

$$a = 1.000\,0000\,0000\,0000\,0000 \times 2^3$$

to:

$$b = 1.000\,0000\,0000\,0000\,0000 \times 2^4$$

Equalizing exponents

- Exponents for a and b are different, so equalize them
 - Shift one of them
 - The shifted representation is internal
 - Only the result after addition is visible
- $b = 10.00\,0000\,0000\,0000\,0000 \times 2^3$
- $a+b=11.00\,0000\,0000\,0000\,0000\times 2^3$
- Normalized, $1.100\,0000\,0000\,0000\,0000 \times 2^4$

Double-precision

- 64-bit floating point format
 - Significand: 53 bits (52 stored), around 17 decimal digits of precision
 - Exponent: 11 bits (biased by 1023)
 - Sign: 1 bit
- In C, usually double
- \bullet Range: 2^{-1022} to 2^{1023} for normalized numbers
 - Roughly 10^{-308} to 10^{308}

A Programmer's View of Floating Point

- When translating algorithms from math to code, be wary
 - Computers use floats, not real numbers!
- Two major problems:
 - Non-termination (usually because exact == is not possible)
 - Numerical instability (approximation errors are "magnified")
- If you deal with computational science or use numerics extensively, educate yourself
 - Resources at the end
 - Or take a Numerical Analysis class (primer at the end)

How the machine supports floating point

- A math co-processor called the "floating point unit"
 - Back in the day, a separate processor
 - The Intel 387 is a classic
- For machines without a coprocessor, everything was done in software
 - Sometimes called "softfloat"
 - Still used to handle denormals on some processors
- These days, integrated into the CPU as FPUs

Some excitement these days

- Intel, NVIDIA and AMD recently announced support for FP8
 - 8-bit floating point numbers
- Follows the introduction of FP16 a few years ago
 - 16-bit floating point numbers
- Driven by the needs of deep learning programs and memory constraints
 - Also, "correctness" is not number #1 priority for DL

Outline

Introduction

Bits, Functions and Boolean Algebra

Machine Data Types

Interpreting Bits as Integers

Bitfields

Real Numbers

The IEEE Floating Point Standards

Arbitrary Precision

Python Integers

• Python only has signed integers (like Java)

```
v = 1
for i in range(256):
    v = v * 2
print(v)
```

- What is the value of v that is printed?
 - A: Undefined
 - B: $2^{256} \mod 2^{64}$ (assuming 64-bit integers)
 - C: 2²⁵⁶
- Reference: Python Numeric Types

Arbitrary Precision Floating Point

The bc calculator in Linux:

16279216.0

```
bc 1.07.1
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006, 2008, 2012-2017
This is free software with ABSOLUTELY NO WARRANTY.
For details type 'warranty'.
16777216.0+1.0
16777217.0

16777219.0

f = 16277216.0
for(i = 0; i < 2000; i++) { f += 1.0; }</pre>
```

Summary

Take away: floating point numbers are NOT real numbers

For further study:

- Link to An Interview with the Old Man of Floating-Point
 - IEEE754 won William Kahan the Turing Award
- Definitely read:
 - Goldberg, What Every Computer Scientist should Know about Floating-Point Arithmetic, ACM 1991
 - Stadherr, High Performance Computing, Are we just getting wrong answers faster?
 - Trefethen, Numerical Analysis