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Real World Data

� Numbers

� Text

� Pictures

� Audio

� Scents

� ...

Most can be encoded as numbers



Building Blocks of the Digital Universe

And most numbers can be encoded as binary digits (or bits),

consisting of the values 0 and 1.



Bits in the Physical World

� In classical computers, usually voltages

� HIGH voltage indicates 1, LOW voltage indicates 0

� Actual voltages depend on logic family

� for TTL, (VCC ) 5V: 0-0.8V is LOW, and 2V-5V is HIGH

� for CMOS, much wider range, but 5V and 3.3V common

� In quantum computers, other weird phenomena

� Read The Talk, if interested

https://www.smbc-comics.com/comic/the-talk-3
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AND

� AND outputs 1 only when both inputs are 1

a b Output

0 0 0

0 1 0

1 0 0

1 1 1



OR

� OR outputs 1 if either input is 1

� hence, “inclusive or”

� not how it is used in English!

a b Output

0 0 0

0 1 1

1 0 1

1 1 1



XOR

� XOR, 1 only when exactly one of its input is 1

� hence, “exclusive or”

� pronounced “ecks-or” (i.e. x-or) or “zor”

� I prefer the latter...

a b Output

0 0 0

0 1 1

1 0 1

1 1 0



NAND and NOR

� NAND = NOT (AND(a, b))

a b Output

0 0 1

0 1 1

1 0 1

1 1 0

� NOR = NOT (OR(a, b))

a b Output

0 0 1

0 1 0

1 0 0

1 1 0

� NAND and NOR are universal gates

� Can be used to implement any boolean function



Examples of NAND

� What should ? be in the following examples to make LHS =
RHS?

� NOT (a) = NAND(a, ?)

� AND(a, b) = NAND(NAND(a, b), ?)

� OR(a, b) =?



Generalizing to inputs longer than one bit

� Inputs longer than one bit are called:

� bit vectors

� bit strings

� or more specific names for particular names (e.g. 8 bits = byte)

b7 b6 b5 b4 b3 b2 b1 b0

0 1 0 1 1 0 0 1

AND 0 1 1 1 0 1 1 0

0 1 0 1 0 0 0 0

� Each bit in the first 8-bit input is ANDed to its corresponding

bit in the second input

� The AND operates on each pair of bits separately



Logic and Boolean Algebra

� Logical variables take only values TRUE and FALSE

� Logical operations are operations on these values

� e.g., “Not True = False”

� Systematized by George Boole in 1847

� Later expounded in The Laws of Thought, 1854

� Claude Shannon connected boolean algebra to digital circuit
design

� Originally, to design circuits that used electromechanical relays

as switches

� Now digital circuits use transistors, but principles are the same

� Also coined the word “bit” later...
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Bits, Bytes, Words, ...

� Almost no machine allows manipulation of single bits directly

� Bits are handled as aggregations

Size (bits) Common Name

8 byte

16 word, halfword

32 word, doubleword

64 word, doubleword, quadword

128 ?

� A machine word (sometimes the word “machine” is omitted)
is the size (in bits) of data that a machine can manipulate at
once.

� Hence 16-bit machines, 32-bit machines, 64-bit machines, etc.



Reading a byte

b7 b6 b5 b4 b3 b2 b1 b0

0 1 1 0 1 1 0 1

27 26 25 24 23 22 21 20

� In place-value notation, b0 = 1 and b7 = 27 = 128

� Hence, this is 1× 26 + 1× 25 + 1× 23 + 1× 22 + 1× 20 = 109

� The grouping of 4 bits together is called a nybble (i.e. half a
byte)

� Primarily improves readability

� But can also be used to easily convert to base-16 (i.e.

hexadecimal)

� b0 (i.e. rightmost bit) is called the least significant bit (LSB)

� contributes the smallest value (20)

� b7 (i.e. leftmost bit) is called the most significant bit (MSB)

� contributes the most value (27)



Hexadecimal

� Numbers in base 16

� 0 to 9 and A to F

� Usually indicated by a 0x prefix, or a 16 subscript

� e.g., 0xA = A16 = 1010 = 10102

� 10910 = 0110 11012 = 0x6D

� Hexadecimal is widely used in low-level code



Multibyte Data Types and Memory Layout

� The 16-bit value 5199610 has hexadecimal representation
0xCAFE

� Its binary representation is 1100 1010 1111 11102

� The value 0xCA is its most significant byte

� The value 0xFE is its least significant byte

� RAM is byte addressable

� Can read individual bytes of a multibyte value

� How should we order each byte of a multibyte value?



Little and Big-endian

� Storing a 32-bit value 0xDEADCAFE in memory

� Big endian: Most significant byte at lower addresses

� Little endian: Least significant byte at lower addresses

address x x + 1 x + 2 x + 3

big-endian 0xDE 0xAD 0xCA 0xFE

little-endian 0xFE 0xCA 0xAD 0xDE

� Different machines use different conventions

� Intel/AMD usually little endian

� SPARC/PowerPC usually big endian

� ARM can switch between the two

� Big endian is sometimes called network byte order

� Similar problem: which byte of a word gets on the wire first?



The Interpreter of Bits

� Does the byte 0x55 in memory indicate:

� The integer value 85?

� The Intel assembly language instruction push %rbp

� There is nothing in 0x55 that can distinguish between these
two interpretations

� Very powerful idea

� Code can be data and data can be code
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Integers

� The most common interpretation of bytes, words, etc. is that
as “integers”

� Whole numbers (no fractional part)

� Can be positive or negative

� Examples: -3, -2, -1, 0, 1, 2, 3



How many bits are required?

� The number of bits required to store N distinct values is
dlog2(N)e

� i.e. logarithm of N to the base 2

� i.e. find x such that 2x = N, and round it up

� Example #1: There are two possible values for sign, so N = 2

� log2(2) = 1, so one bit is required to store sign

� Example #2: If N is 200, then x = log2(200) = 7.644, so 8

bits are required



Stuffing numbers into a byte: Sign-Magnitude

� A byte has 8 bits

� One bit is used for the sign, 7 bits left

� Can store magnitudes from 0 to 27 = 127

� Let MSB be sign bit

� Let other bits store magnitude

� Can store numbers from -127 to +127

b7 b6 b5 b4 b3 b2 b1 b0

+8910 0 1 0 1 1 0 0 1

−8910 1 1 0 1 1 0 0 1

010 0 0 0 0 0 0 0 0

−010 1 0 0 0 0 0 0 0



Stuffing numbers into a byte: One’s Complement

� Can store magnitudes from 0 to 27 = 127

� Let MSB be sign bit

� Let other bits store magnitude

� except if sign bit is set, magnitude must be complemented

(i.e. inverted) to get actual value

� one’s complement of bit value x is 1− x , i.e. the same as

NOT (x)

� Represents numbers from −127 to +127

b7 b6 b5 b4 b3 b2 b1 b0

+8910 0 1 0 1 1 0 0 1

−8910 1 0 1 0 0 1 1 0

010 0 0 0 0 0 0 0 0

−010 1 1 1 1 1 1 1 1



Stuffing numbers into a byte: Two’s Complement

� Can store magnitudes from 0 to 27 = 127

� Let MSB be sign bit

� Let other bits store magnitude

� To negate a number, complement all its bits and add 1

� Can store numbers from -128 to 127

b7 b6 b5 b4 b3 b2 b1 b0

+8910 0 1 0 1 1 0 0 1

−8910 1 0 1 0 0 1 1 1

010 0 0 0 0 0 0 0 0

−010 0 0 0 0 0 0 0 0

−12810 1 0 0 0 0 0 0 0



Integer Representations

� There is more than one way to represent the same integer

� Sign-magnitude

� One’s complement

� Two’s complement

� Some of them are non-intuitive

� negative and positive zeroes

� asymmetric ranges [-128, 127]

� All of them have different hardware implications

� Addition and subtraction circuits differ

� Generally, most computers you will encounter use

two’s-complement arithmetic



Integers in C

� Basic C types:

char a;
short b; /* alternative form: short int */
int c;
long d; /* alternative form: long int */
long long e;

� C implementations are required to provide a minimum size for
each type

� char must be at least 8 bits

� int must be at least 16 bits

� long must be at least 32 bits

� long long must be at least 64 bits

� The prefix unsigned (e.g. unsigned char) allows all bits to
be used to store the magnitude (i.e. there is no sign bit).

� char must be able to store [−127, 127]

� unsigned char must be able to store [0, 255]

� C23 requires support for two’s complement



Fixed-width Integers in C99

#include <stdint.h>
int8_t a; /* signed 8-bit integer */
uint8_t ua; /* unsigned 8-bit integer */

int32_t b; /* signed 32-bit integer */
uint32_t ub; /* unsigned 32-bit integer */

...

� C99 is the C standard “version” 1999.

� Finally allowed fixed-width types

� Still does not mandate any particular representation (C23

does!)

� The variables INT8 MIN and INT8 MAX contain the range for
int8 t

� similarly, UINT8 MIN and UINT8 MAX contain the range

uint8 t
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Bitpacking

� Sometimes space is at a premium

� Want to use as few bits as possible

� Bitfields:

� Partition a machine word into distinct fields



Example

� Suppose we want to store day and day of the week using as

little space as possible

uint8_t day = 9;
uint8_t dow = MON;

� Day takes value 1–31

� Bits required: ?

� Day of week takes 0 (SUN)– 6(SAT)

� Note here we want to store 1 of 7 values

� Bits required: ?

� Total storage used by two uint8 t variables: 16 bits

� Bits wasted: ?



Minimum Bits using Bitfields

enum days_of_week {
SUN = 0,
MON = 1,
TUE = 2,
WED = 3,
THU = 4,
FRI = 5,
SAT = 6

};

b7 b6 b5 b4 b3 b2 b1 b0

Mon 9 0 1 0 0 1 0 0 1

Day of Month Day of Week



Constructing a bitfield

uint8_t daydow;
daydow = (9 << 3) | MON;

� Here, 9 is the day

� It is left-shifted by 3 bits using the left-shift (<<) operator

� Empty positions at right are filled with zeroes

� Bits at left are discarded

� Like multiplying by 103 in the metric system, except here we’re

multiplying by 23

� 0x9 (binary 1001) becomes 0x48 (binary 0100 1000)

� Then we OR the day of the week into the freshly created

lower 3 zero bits



Getting the Day of the Week

b7 b6 b5 b4 b3 b2 b1 b0

Mon 9 0 1 0 0 1 0 0 1

Day of Month Day of Week

result 0 0 0 0 0 0 0 1

� We want to force the day (of month) field to zero.

� What are OP and MASK?

dow = daydow OP MASK;



Getting the Day of the Week (Solution)

b7 b6 b5 b4 b3 b2 b1 b0

Mon 9 0 1 0 0 1 0 0 1

Day of Month Day of Week

mask 0 0 0 0 0 1 1 1

result 0 0 0 0 0 0 0 1

� We want to force the day (of month) field to zero.

dow = daydow & 0x7;



Getting Day of Month

b7 b6 b5 b4 b3 b2 b1 b0

Mon 9 0 1 0 0 1 0 0 1

Day of Month Day of Week

mask 1 1 1 1 1 0 0 0

result 0 1 0 0 1 0 0 0

� C code, all bits except lower 3

day = daydow & (0x1f << 3);

� Is the result what we want?



Undoing the left shift

day = (daydow & (0x1f << 3)) >> 3;

� We got 0x48 because we had shifted it left

� We can undo it by doing a right shift by 3 bits using the
right-shift >>) operator

� Bits at right are discarded

� Like dividing by 23, and throwing away the

remainder/fractional part

� 0x48 (binary 0100 1000) becomes 0x9 (binary 0000 1001)



Even shorter ...

day = (daydow >> 3) & 0x1f;

� Since we’re using uint8 t, the masking is superfluous

� For unsigned integers, right shifting will fill in bits at left

with 0

� Since all bits to the left of the Day of Month field are zero, we
can eliminate the mask and the AND

� But recommend always using a mask, as good programming

practice



Real-life bitfields and bitsets: Unix file permissions

� Basic File permissions (can be simultaneously enabled)

� READ

� WRITE

� EXECUTE

� Permissions for

� User/Owner

� User’s Group

� Others

b8 b7 b6 b5 b4 b3 b2 b1 b0

rwxr-x--- 1 1 1 1 0 1 0 0 0

User/Owner Group Others
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Real Numbers

� R
� infinite (just like integers)

� but they are different infinity (uncountable)

� There are infinite real numbers between any two real numbers

� How do we represent these using a finite, fixed number of
bits?

� Say, 32 bits



The problem

� Assume 5 bits are available

� Consider 17: 10001

� Consider 18: 10010

� Where shall we put 17.5?

� No bit pattern ”halfway” between 10001 and 10010



One option

� Consider only deltas of 0.25, 0.5, 0.75

� Then

� 17.00: 10001

� 17.25: 10010

� 17.50: 10011

� 17.75: 10100

� 18.00: 10101

� This is the basis of the idea of fixed point

� Can’t represent all numbers

� Fixed accuracy

� Used widely in tiny computers



Representing Real Numbers

� We cannot represent real numbers accurately using a finite,
fixed number of bits

� But do we need infinite accuracy?

� How many (decimal) digits of precision do we use?

� In our bank accounts (before and after the decimal point?)

� In engineering?

� In science?



On magnitudes

� Smallest length

� Planck length, on the order of 10−35 (would require 35 decimal

digits)

� Smallest time

� Planck time, on the order of 10−44

� Width of visible universe

� On the order of 1024

� Lower bound on radius of universe: 1027



On precision

� Avogadro’s number: 6.02214076× 1023

� So, actually: 602214076000000000000000

� π = 3.1415...× 100

� NASA requires about 16 decimal digits of π1

� We know about a trillion

1https://blogs.scientificamerican.com/observations/

how-much-pi-do-you-need/

https://blogs.scientificamerican.com/observations/how-much-pi-do-you-need/
https://blogs.scientificamerican.com/observations/how-much-pi-do-you-need/


Scientific notation for numbers

� The scientific notation allows us to represent real numbers as:

significand× baseexponent

� For Avogadro’s number:

� Significand: 6.02214076

� Significand is scaled so always only one digit before the

decimal point

� Base: 10

� Exponent: 23



Binary Scientific Notation

� We can use scientific notation for binary numbers too:

1.011× 23

� Here, the number is:

� (1× 20 + 0× 2−1 + 1× 2−2 + 1× 2−3)× 23

� (1× 23 + 0× 22 + 1× 21 + 1× 20) = 1110

� Components:

� Significand: 1.011

� Base: 2

� Exponent: 3



Binary Scientific Notation: Example #2

� Now with a negative exponent:

1.011× 2−3

� Here, the number is:

� (1× 20 + 0× 2−1 + 1× 2−2 + 1× 2−3)× 2−3

� (1× 2−3 + 0× 2−4 + 1× 2−5 + 1× 2−6)

� (0.12510 + 0 + 0.062510 + 0.0312510) = 0.171875

� Components:

� Significand: 1.011

� Base: 2

� Exponent: -3



Some design notes

� Significand contains a radix point (i.e. decimal point or binary
point)

� But it’s position is fixed: only one digit before the radix point

� In binary scientific notation, this is always 1 (why?)

� We don’t need to store the radix point

� So significand can be treated as an integer with an implicit

radix point

� Base is always 2 for binary numbers

� No need to store this

� Exponent is also an integer

� Could be negative or positive or zero



Design notes (continued)

� So (binary) real numbers can be expressed as a combination
of two fields:

� significand (possibly a large number, say upto 10 decimal

digits)

� exponent (possibly a smallish number, say upto 4410)

� would allow us to store numbers with at least 10 decimal digits

of precision, upto 44 decimal digits long

� We’ll also need to store sign information for the significand

and the exponent

� How many bits?

� for 10 significant decimal digits? e.g. 9,999,999,999

� for max. exponent 5010?

� plus two bits for sign (one for significand, one for exponent)



Design notes (continued)

� How many bits?

� for 10 significant decimal digits? e.g. 9,999,999,999: about 34

bits

� for max. exponent 50? about 6 bits

� plus two bits for sign (one for significand, one for exponent)

� Total: 34 + 6 + 2 = 42 bits

� Could be implemented as a bitfield

� But 42 is between 32 and 64, not efficient to manipulate

� What format should we use to store negative significands and
exponents?

� sign/magnitude

� one’s complement

� two’s complement

� other?



Bitfield Design Constraints

� Ideally should fit sign, significand and exponent in 32 bits or
64 bits

� Easier to manipulate on modern systems

� Arithmetic operations should be fast and “easy”

� Comparison operations should be fast and “easy”

� e.g. should not need to extract fields and compare separately

� Should satisfy application requirements

� esp. with accuracy, precision and rounding

� should probably be constraint #1
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IEEE 754 32-bit floating point standard

� Total size: 32-bits

� Also called “single-precision”

� On most systems, the C type float is single-precision

� Significand: 24 bits, roughly 7 significant (decimal) digits of
accuracy

� Sometimes called (wrongly) the Mantissa

� Exponent: 8 bits, from 2−126 to 2127 (roughly 10−38 to 1038

(decimal))

� Sign bit: 1 sign bit for the significand

� What about sign bit for the exponent?

� Also supports special representations:

� for +∞ and −∞
� For “not-a-number“ NaN, e.g. for representing (0/0)

� “denormals”

� Note: 24 + 8 + 1 = 33, not 32



Representing the significand

1.100 1001 0000 1111 1101 1011

� 24 bits of significand

� Normalized form, only one digit before the radix point

� Change the exponent until this is achieved (normalization)

� That digit must be non-zero

� Always 1

� Hence, do not need to store it!

� Only use 23 bits for the magnitude

� In example, only 100 1001 0000 1111 1101 1011 is stored

� Uses sign/magnitude notation (not one’s or two’s
complement)

� 1 bit for sign (0 for +, 1 for −)

� 23 bits for magnitude + one always 1 implicit bit (not stored)



Appreciating Precision

One weird trick to make money from banks:

#include <stdio.h>

int main(void) {
float f;
int i;

f = 16777216.0;
f = f + 3.0;

printf("%f\n", f);
}

� Note that 16777216 is 224

� What is the value of f that is printed?

� A: 16777216.0

� B: 16777219.0

� C: 16777220.0

� D: something else

� E: undefined



More Surprises

#include <stdio.h>

int main(void) {
float f;
int i;

f = 16777216.0;

for(i = 0; i < 2000; i++) {
f = f + 1.0;
// printf("%f\n", f) // uncomment to see what is happening

}

printf("%f\n", f);
}

� What is the value of f that is printed?

� A: 16777216.0

� B: 16779216.0

� C: something else

� D: undefined



This is not C specific!

� Integers in Python behave differently from C

� Don’t overflow, are always signed

� Python’s integers are like mathematical integers

� Very few languages implement mathematical reals though.

� Most use IEEE 754

� Python, Javascript, Java, etc.



Rounding

� IEEE floating point rounds numbers that cannot be exactly

represented

� For an operation ⊕ (where ⊕ could be any of mathematical
+,−, /,×)

� the standard says x ⊕ y → Round(x ⊕ y)

� Four rounding modes

� Round towards nearest (also known as round towards even,

and default)

� Round towards zero

� Round towards +∞
� Round towards −∞



What’s happening

� 16777216.0 + 1.0 is unrepresentable

� By default, rounding mode is round to nearest

� Nearest is 16777216.0

� No change!

� Why it is also called round to even

� If an unrepresentable value is equidistant between two

representable values

� It is not possible to say which is “nearest”

� IEEE standard picks the even value between the two

representable values

� This makes floating point arithmetic non-associative

� (a + b) + c 6= a + (b + c)

� ((a + 1.0) + 1.0) 6= (a + (1.0 + 1.0))



Representing the Exponent

� 8-bit wide bitfield

� Can store 256 values

� Must store values from -126 to 127 (that’s 254 values)

� Uses biased representation

� To store x , we actually store x + 127 in 8 bits

� So 127 is stored as 254

� And −126 is stored as 1

� No sign bit required!

� So field actually contains values from 1 to 254 to represent

−126 to 127

� The biased values 0 and 255 are used to indicate special

numbers



Why biased? Comparing exponents

Which is greater?

1.011× 2−3

Or:

1.011× 2+3

� Note -3 in biased notation is −3 + 127 = 124 = 0111 11002

� Note 3 in biased notation is +3 + 127 = 130 = 1000 00102



Putting it altogether

� Three bit fields

� s: Significand Sign (1 bit)

� M: Significand (23 bits)

� E : Biased Exponent (8 bits)

� 6 possible ways to order them

� s,M,E

� s,E ,M

� M, s,E

� M,E , s

� E , s,M

� E ,M, s

� Out of familiarity, let’s only consider those where s occupies

higher bits than M



Comparing Three Formats

� Suppose you have two numbers:

� a = 1.100...× 23

� b = 1.010...× 25

� Which is greater?

� Representation

� Significand: 100...2 for a and 010..2 for b

� Exponent: 3 + 127 = 130 = 1000 00102 and

5 + 127 = 132 = 1000 01002

� Sign is 0 for both



Comparing Three formats (contd.)

� s,M,E

� 0 | 100 000 ... | 1000 0010

� 0 | 010 000 ... | 1000 0100

� s,E ,M

� 0 | 1000 0010 | 100 000 ...

� 0 | 1000 0100 | 010 000 ...

� E , s,M

� 1000 0010 | 0 | 100 000 ...

� 1000 0100 | 0 | 010 000 ...



IEEE 754 Single Precision Format

� Uses s,E ,M format

� If a number x > y , then its bitwise representation x > y

� When sign bit is same, scan from bit 30 to 0, looking for first

different bit

� When sign bit is different, 1 in sign bit indicates less than 0

(exceptions +0 and -0)

� Can thus compare floating point numbers without having to

extract bitfields!



Representing Zero

0× 2x

� Has no leading 1

� Special representation

� Sign bit can be 0 or 1

� Exponent is all zeroes (i.e. it appears to be −127 stored

biased, hence −126 is lower limit)

� Magnitude is all zeroes

� Hence:

� +0: all 32 bits are zero

� −0: sign bit is 1, but all other bits are zero



The smallest normalized single-precision number

+1.000 0000 0000 0000 0000× 2−126

� In IEEE: 0 | 0000 0001 | 000 0000 0000 0000 0000

� | just for visual separator

� That’s just 2−126

� Approximately, 1.17549435× 10−38

� What should happen if we divide this by two?

� I.e.

(0.0000000000000000000000000000000000000117549435/2)

� (+1.000 0000 0000 0000 0000× 2−126)/2

� (+1.000 0000 0000 0000 0000× 2−127)



Let’s make it zero!

� Default behaviour on many systems before IEEE754

� Underflow to zero

� a = 1.000 0000 0000 0000 0000× 2−126

� b = 1.000 0000 0000 0000 0001× 2−126

� What is a− b?

� Remember, a 6= b

� What would x/(a− b)?



Denormals

� a = 1.000 0000 0000 0000 0000× 2−126

� b = 1.000 0000 0000 0000 0001× 2−126

� a− b = 0.111 1111 1111 1111 1111× 2−126

� Numbers of this form are called denormals or subnormals

� They have a 0 before the radix point

� IEEE 754 specifies how to store denormals:

� s, sign as usual

� E , exponent is zero

� M, the significand is non-zero

� This allows “gradual underflow” to zero

� Some systems detect denormals and perform arithmetic in

software

� Slow!



Representing Infinities

0 1111 1111 000 0000 0000 0000 0000

� In the above representation,

� Sign: 0

� Exponent: 255

� Significand: 0

� Exponent

� 0 indicates either zero or a subnormal

� 1 to 254 indicates normalized exponent -126 to 127

� 255 indicates either infinity or NaN

� With significand zero:

� Exponent 255 indicates +∞ or −∞ (depending on sign)

� −∞ < x < +∞ where x is any representable number



Representing NaNs

0 1111 1111 xxx xxxx xxxx xxxx xxxx

� In the above representation,

� Sign: 0

� Exponent: 255

� Significand: 6= 0 (i.e. the x bits are not all zero)

� With significand non-zero:

� Exponent 255 indicates NaN (not-a-number)

� Produced by operations like 0/0, ∞/∞, etc.

� NaNs propagate:

� Any operation involving a NaN results in a NaN



Addition in Floating Point

Add

a = 1.000 0000 0000 0000 0000× 23

to:

b = 1.000 0000 0000 0000 0000× 24



Equalizing exponents

� Exponents for a and b are different, so equalize them

� Shift one of them

� The shifted representation is internal

� Only the result after addition is visible

� b = 10.00 0000 0000 0000 0000× 23

� a + b = 11.00 0000 0000 0000 0000× 23

� Normalized, 1.100 0000 0000 0000 0000× 24



Double-precision

� 64-bit floating point format

� Significand: 53 bits (52 stored), around 17 decimal digits of

precision

� Exponent: 11 bits (biased by 1023)

� Sign: 1 bit

� In C, usually double

� Range: 2−1022 to 21023 for normalized numbers

� Roughly 10−308 to 10308



A Programmer’s View of Floating Point

� When translating algorithms from math to code, be wary

� Computers use floats, not real numbers!

� Two major problems:

� Non-termination (usually because exact == is not possible)

� Numerical instability (approximation errors are “magnified”)

� If you deal with computational science or use numerics
extensively, educate yourself

� Resources at the end

� Or take a Numerical Analysis class (primer at the end)



How the machine supports floating point

� A math co-processor called
the “floating point unit”

� Back in the day, a

separate processor

� The Intel 387 is a classic

� For machines without a
coprocessor, everything was
done in software

� Sometimes called

“softfloat”

� Still used to handle

denormals on some

processors

� These days, integrated into

the CPU as FPUs

CPU

RAM

ALUALU FPU



Some excitement these days

� Intel, NVIDIA and AMD recently announced support for FP8

� 8-bit floating point numbers

� Follows the introduction of FP16 a few years ago

� 16-bit floating point numbers

� Driven by the needs of deep learning programs and memory
constraints

� Also, “correctness” is not number #1 priority for DL
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Python Integers

� Python only has signed integers (like Java)

v = 1
for i in range(256):

v = v * 2

print(v)

� What is the value of v that is printed?

� A: Undefined

� B: 2256 mod 264 (assuming 64-bit integers)

� C: 2256

� Reference: Python Numeric Types

https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex


Arbitrary Precision Floating Point

The bc calculator in Linux:

bc 1.07.1
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006, 2008, 2012-2017 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type ‘warranty’.
16777216.0+1.0
16777217.0

16777216.0+3.0
16777219.0

f = 16277216.0
for(i = 0; i < 2000; i++) { f += 1.0; }

f
16279216.0



Summary

� Take away: floating point numbers are NOT real numbers

For further study:

� Link to An Interview with the Old Man of Floating-Point

� IEEE754 won William Kahan the Turing Award

� Definitely read:

� Goldberg, What Every Computer Scientist should Know about

Floating-Point Arithmetic, ACM 1991

� Stadherr, High Performance Computing, Are we just getting

wrong answers faster?

� Trefethen, Numerical Analysis

https://people.eecs.berkeley.edu/~wkahan/ieee754status/754story.html
https://dl.acm.org/citation.cfm?id=103163
https://dl.acm.org/citation.cfm?id=103163
https://www3.nd.edu/~markst/cast-award-speech.pdf
https://www3.nd.edu/~markst/cast-award-speech.pdf
https://people.maths.ox.ac.uk/trefethen/NAessay.pdf
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